
JADE Agents to Wireless Sensors: Easy Wireless
Sensor Network Management

Jakub Zak1, Frantisek Zboril jr.2, Jan Horacek3 and Frantisek Zboril4

1Faculty of Information Technology, Brno University of Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic

izakjakub@fit.vutbr.cz

2Faculty of Information Technology, Brno University of Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic

zborilf@fit.vutbr.cz

3Faculty of Information Technology, Brno University of Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic

ihoracek@fit.vutbr.cz

4Faculty of Information Technology, Brno University of Technology
Bozetechova 1/2, 612 66 Brno, Czech Republic

zboril@fit.vutbr.cz

Abstract—This particular paper describes our most recent
work on our system called JAWS. This system is intended to
control and monitor Wireless Sensor Network. In principle,
JAWS is group of agents implemented on JADE platform. It
consists of several agents that are able to communicate with
Wireless Sensor Nodes and obtain values from particular sensor
nodes called motes. We are also able to inject mobile code to each
mote so we can change behaviour of that mote and in extension of
the whole network. JAWS system uses services as a natural and
most viable concept that helps us to control and monitor Wireless
Sensor Network. We will briefly describe basic concepts of our
system and describe services used for controlling the network.
Concept of services is tightly bound to ability of the system to
expose and use services. To expose and use services we created
set of protocols. In this paper will be also described the most
important protocols of our system. In the end of the paper we
will describe some of the problems that we experienced using
our system and we also describe some counter actions that we
performed to troubleshoot some problems.

Keywords-JAWS; JADE; Wireless Sensor Network; Service;
Artificial Agent; Protocol.

Wireless Sensor Networks (further WSN) are in the scope
of researchers in the last years. It is because of their ability to
measure various physical quantities in physical environment.
The second reason is that their motes (nodes of network) are
also able to communicate with each other via radio channel.
By this two abilities, WSNs are mostly used for monitoring
purposes in some environment. This is useful when we need
to measure data with high density of measurements because
WSNs are able to run with thousands of motes that are
distributed within measured environment. For data gathering is
used special node called Base Station (further BS) that can be
connected to computer and that can deliver data sent by motes
from network. WNSs are also likely used in environments that
are hostile for human or where human presence is not suitable.
One example for all is experiment on monitoring habitats

on Great Duck Island[1]. In this experiment, the ducks were
monitored on island and presence of humans could change
animal behaviour and thus devalue whole experiment.

There are various ways to control mote in WSN. Since
our research is in area of artificial agents our systems are
agent based. This approach has been proved viable in other
agent based systems for controlling WSN (e.g. Agilla[2]). In
our case we developed system called WSageNt[3] that is in
principle similar to Agilla. It is agent based and it is a platform
that runs on each mote. Agent is then understood as a small
piece of code that is interpreted on platform. That is where the
similarity ends. Agilla agent code is similar to assembler but
our agents are written in Agent Low Level Language[4]. Since
our ALLL agents can move among motes, ALLL language is
designed to be minimalistic. It means that less bytes have to
be sent via radio channel, which the is biggest consumer of
the battery of a mote. As postulated in [5] sending 1 bit of
information is equal interpreting about 1000 of instructions.
We briefly describe WSageNt system in section II.

We explained the system running on each mote. This system
allows each mote in WSN to sense environment (via mote’s
sensors) and it is able to talk to other motes in network. The
only other thing we need now is BS that will collect data
sent from motes. Motes can send data at any time so it seems
useful to have a system that will gather this data from Base
Station and that will process them in some, possibly intelligent,
manner. Since “intelligent” agent runs on each mote, data can
be processed directly on mote. For example sums of data
or average values can be precomputed so less bytes will be
transmitted over radio and some battery will be saved.

Even though data can be preprocessed some of it arrives
to the Base Station and in extension to some system that
will process them further to obtain more complex information
than data itself. And JAWS is exactly such a system. It can
obtain data from WSN on the one side and it can send data
or even ALLL agents to network on the other side. Since

Journal of Network and Innovative Computing
ISSN 2160-2174 Volume 1 (2013) pp. 260-269
© MIR Labs, www.mirlabs.net/jnic/index.html ___

Dynamic Publishers, Inc., USA

I. Introduction

261

WSageNt is based on agent oriented paradigm it seems elegant
to stick with the concept of agents when creating a system that
will interoperate with WSN. So we decided to create pure
agent based system and that’s why JAWS is based on artificial
agents. Basically, there are some agents that run on JADE
platform and that create core of JAWS. These agents “live”
on personal computer that has undoubtedly more computing
power and that has in general more resources than one mote.
From this point of view, it seems quite useful to compute a
task in JAWS so some additional battery of mote can be saved.
It is necessary to point out here that we need to find proper
border that says, which tasks are better to compute directly on
mote and which data are better to be sent to BS. For example,
it is obvious that evaluation of topology of network won’t be
counted by each mote of network. It is more elegant solution to
send agent that will gather necessary data and counting itself
execute in JAWS. On the other side, when mote should just
measure temperature we can measure 5 times and then count
average value to partially avoid sensor inaccuracy. In this case
few additions and a division (to count average value) looks
better than sending 5 values instead of one.

In the next section we will describe our system that runs on
motes so the reader gets context of Wireless Sensor Network
and its possible behaviour. Then we describe basic concepts of
our system JAWS including architecture description. Then we
describe Services that we have created for possibility to control
and monitor network. In section about services we also show
main protocols that we use and that are bound to subscribing
and using services in our system. Finally we describe some of
the problems we encounter during use of our system and also
some solution of problems outlined.

This paper is extension of the paper presented on ISDA
2012 Conference[21].

In this section we will describe our agent platform for sensor
nodes, which is called WSageNt. WSageNt platform is loaded
into all sensor nodes in the network and it interprets a code
of an agent, which is written in ALLL (Agent Low Level
Language).

Whole platform has to be minimalistic. Sensor node does
not have enough resources to run more complex multi-agent
systems such as Jason[14] or JADE[7]. Further in the text we
will focus mainly on IRIS motes, that are supported by our
WSageNt platform. Such node contains up to 8 kB of RAM,
802.15.4 compliant radio module, various types of sensor
boards and its MCU runs at 8 MHz. We have to note that there
is also one more important part of sensor node that limits its
performance. This most limiting parameter of sensor node is
the battery.

Sensor nodes are usually placed into inaccessible area so the
maintenance of nodes and change of battery are impossible.
Node should be able to run for months or years without change
of battery (depends on application). Our WSageNt platform
solves also one part of problem mentioned before. If we want
to change a behaviour of a node it can be sometimes tricky.
There are nodes, which can not be reprogrammed remotely

through the radio. Since each ALLL agent is interpreted by
our platform we are able to maintain all of the supported nodes
remotely.

We will mention parts of each agent, some services and
agent actions that are supported by our platform. Our platform
supports interpretation of one agent at each sensor node. We
can classify our platform to be a derivative of BDI (belief,
desire, intention) system. Agent is composed from its belief
base, input base, plan base, intention and 3 registers. More
about agent parts can be found in [3].

In each step of interpretation, an agent can perform one
action or run some built-in service. Actions include updating
belief base, reading actual data from sensors, use of mathe-
matical operations, sending message or migration of the agent
to another node. Built-in services are for example periodical
reading from sensors and preprocessing such data, neighbour
discovery or footmarks of agents at each node.

We will demonstrate capabilities of our platform on the
example bellow. There will be described an agent that will
return an minimal value from data, which are read periodically
from sensor. Such agent is written in ALLL code as follows:

$(d,(m,10))&(1)?(m)!(1,&1)

Platform senses data from sensor periodically. It is done
automatically after the sensor node is turned on and simultane-
ously with performing of agent code. History of measured data
is stored in circular log at the flash memory of sensor node.
First action will select a minimal value from last 10 measured
values. Minimal value is then put into the input base in the
form of tupple (m,MINIMAL_VALUE). Next two actions
&(1)?(m) will transfer this tupple to the register number 1.
Last action !(1,&1) send this tuple to the basestation (node
with network address that defaults to 1).

This example of WSageNt should demonstrate capabilities
of our platform briefly. However, there could be interpreted
only one agent at each node at this moment. We intend to
expand it to run up to 4 agents at one time in next version of
our platform.

JAWS is an abbreviation for JADE[7] Agents to Wireless
Sensors. We’ve chosen JADE platform because we try to
follow standards in our agent based systems. Such standards
are defined by FIPA[6], which is an organisation that creates
standards in the field of agent based systems. There are some
other organisations that cover this area but FIPA is the only
one that defines standards for whole agent system and it will
be shown further that we stick with its standards in all areas
we can. JADE is a reference implementation of FIPA agent
platform. It controls agents life cycles and it has knowledge
about all agents present in JADE platform and further it defines
communication infrastructure for inter-agent communication.

Firstly, we should point out that JADE is system designed
to aim to agents services as a main concept of cooperation
among JADE agents. Now we explain how we understand the
term service and how it is realised in JADE. A service by
the means of JADE is a piece of behaviour or ability that

Zak et al.

II. WS Agent

III. JAWS

an agent is able to perform and that the agent is willing to
perform for any other agent. For this purpose JADE contains
a special agent called Directory Facilitator (further DF) that
holds service called yellow pages. This concept means that
any regular JADE agent can expose its services to Directory
Facilitator and DF creates a list of services for every agent.
When agents present in system expose their services (typically
after start of platform), DF has list of agents and for each
agent it has list of services that is that particular agent able
to perform. At this point, any agent can ask DF different
questions about provided services in system. Firstly, agents can
ask about specific service by providing its name. DF returns
list of agents that are able to perform this task. Any agent
can also ask about services provided by other specific agent.
Basically, any agent can search DF yellow pages by specifying
various parameters from service description[9].

Now we must say that JAWS itself is not meant to run as
a solitude system. By our understanding, JAWS is more an
extension of JADE because it is meant to enable other JADE
agents to be able to use all WSN features. Motivation for creat-
ing such a system is to create middle layer between application
(application agents in JADE) and WSN running WSageNt
system. When application programmer creates ready-to-deploy
system he has prepared JADE platform with JAWS extension
where JAWS encapsulates whole WSN. From application pro-
grammer point of view whole WSN resides on agent platform
(JADE) and programmer can obtain any data and control
whole network through JAWS. We could say that JAWS is an
abstraction of whole WSN on desktop and it provides WSN
features by exposing JAWS services to DF. We can JAWS

A. Architecture

In this section, we briefly describe architecture of the system
depicted in Fig. 1. This is important for two reasons. Firstly, it
should be clarified flow of information between sensor network
and JADE agent system with JAWS. Secondly, it will be
explained what kind of data travels which parts of system.
This information raises new challenges for future research.

Natural information flow board in the system is situated
between wireless sensors and JADE application on desktop
computer. This board consists of two applications. First appli-
cation is command line BSComm, which resends data between
JAWS and Base Station. This part of functionality is dedicated
to solitude application because of hardware purposes. When
we change Base Station for different type, we just write new
BSComm application for another piece of hardware and the
whole system works without change.

It is worth mention here that between BSComm and Gate-
way Agent in JAWS is established asynchronous communica-
tion. We developed a small library that is able to play both ba-
sic roles, which are server and client. Server runs naturally in
separate thread so it does not interfere with rest of application.
Application is able to send three types of messages. First type
of message is simple text message. This message is dedicated
to send orders to agents on motes. Second type of message is
agent message. This type of message is assigned to sending
ALLL agents between applications. If we want to inject ALLL

Base
Station

Gateway Agent

HTTP

JADE

Service Agent

WSageNt Agent

JAWSDirectory
Facilitator

Application
Specific
Agent

WSN

BSComm
COM

12

3

Fig. 1. JAWS Architecture

agent to network it is understood as agent message type
between JAWS and BSComm. Last type of message is ACL
message. Our client is able to connect to JADE itself through
its interface so we are able to send message basically to any
agent in JADE. This is for interconnection with our other
tool called T-Mass[20]. Second application is on Base Station
itself. This is special version of WSageNt application for Base
Station.

The rest of the system can be divided into two parts. First
part is represented by JADE platform with JAWS agents and at
least one application agent running on desktop. On Fig. 1 there
is depicted only one mandatory agent and that is Directory
Facilitator. The other agents are not important in this paper so
they were let out from picture. Added functionality in JADE
is JAWS and Application Specific agent. As it can be seen,
JAWS consist of three agents. Previously mentioned Gateway
Agent is responsible for resending data between Service Agent
and BSComm. This agent represents gateway to the world
of JAWS. At this time, its responsibility is only to resend
data but in the future there can be added functionality. For
example, Gateway Agent can be responsible for application
safety. When there is mote full of agents (up to 4) Gateway
Agent can acquire this information and not let rewrite agent
on that particular mote. Second is WSageNt Agent. This agent
is responsible for guarding data about ALLL agents in system.
There are two “kinds” of ALLL agents. First is list of agents

262JADE Agents to Wireless Sensors: Easy Wireless Sensor Network Management

known by system. These are ALLL agents that are inserted
by an application programmer in the phase of designing an
application. We can see this list as a library of plans where one
plan corresponds one agent in list. These are agents that can be
used in the running instance of deployed system. Second is list
of agents that are currently used on motes. This list contains
subset of agents known and also contains information about
agents positions on motes. For this to be possible we presume
that at start of the system motes are populated with agents by
JAWS and in extension by demands of Application Specific
Agent. Last but not least of our agents is Service Agent. This
is JAWS key agent. This agent communicates possibly with all
agents present in JADE at runtime. On one side, it operates
with JAWS specific data that it receives via communication
with JAWS agents. On the other side it communicates with
Application Specific Agent/s to fulfil their application specific
demands. Third channel of communication is connected to
Directory Facilitator. Service Agent uses DF so concept of
services is implemented in JADE/FIPA manner.

Second part of the system is represented by Wireless Sensor
Network running WSageNt. As said previously, WSN collects
data in some environment. That’s its main purpose. Then it
sends data to JAWS. These data are represented by tuples
with strings. So to the JAWS comes only the tuple and
address of mote that sent data. This is the only information
we have in JAWS. Now we need to send data accordingly to
services subscribed by application agents. We have only mote
address but we need to create some representation of data
incoming in message from network. This is difficult task. We
can imagine following scenario. At the beginning we send
ALLL agent to the WSN. That agent only measures two
physical quantities each with its period of time. It sends data
back to the Base Station instantly after measurement. Since
to the JAWS comes only tuple of data we don’t know, which
quantity was measured (in reality mote sends only resistance
of sensor so actual value needs to be recounted according
to proper formula written in sensor/mote datasheet). We can
know the initial order of measurement but if one measurement
is lost (some packets are lost when transmitted) JAWS won’t
be given one measurement so initial ordering is lost. Ordering
is not the solution then. We can also add to each measurement
information about sensor but this solution increases transmitted
data volume thus depletes batteries more quickly. Current
state of art in JAWS is following: We presume carefulness of
application programmer so when some data come from mote
it can be represented in only one possible way. For example, if
that mote is able to send only one type of data (temperature) it
is clear what type of data came from it. This presumption gives
a lot of space for possible errors because all responsibility is on
application programmer. This solution is not quite robust and
it gives a new space for further research. We have proposed
and tested some techniques that lower a little uncertainty of
data coming from the network and we dedicated to this area
section V.

JAWS is meant to be extension of JADE’s concept of
services. More precisely, it is a dynamic set of services

that enables application programmer to tailor ready-to-deploy
systems. As said earlier, access to services is provided by
Service Agent. This agent is responsible for handling services
to both sides of JAWS. To the side of WSN, Service Agent
gives orders to send messages or agents to specific motes.
When a message comes from the network this agent also
decides if its content should be given to Application Specific
Agent/s (further ASA) according to subscribed services. To the
side of JADE, Service Agent communicates with ASA in two
scenarios. Firstly, ASA needs to subscribe for some service.
Initiator of conversation is ASA in this case. More detailed
description of this process will be given in subsection IV-C.
In the second case, Service Agent resends data incoming from
Wireless Network if it finds the data suitable for resending
according to previous ASA subscription.

At this point, we should explain our use of ontologies[10] in
the system. We use the term ontology in two situations. First
situation is ontology concept as it is understood by JADE. We
can provide ontology for subscription as an example. By the
means of JADE ontology is set of classes that fully describe
one concept. This concept is subscription in our case. When
ASA wants to subscribe for some service it needs to be able to
describe service it wants to use. It simply fills out some fields
on prepared object and it sends that object to Service Agent.
The biggest advantage coming from this approach is that JADE
is automatically able to create message from ontology and send
it as string via its communication channels. Agent on the other
side only uses prepared empty objects and let JADE to decode
message. So by using concept of ontology this way, we stick
with standards and we don’t force application programmer
to learn new techniques to send messages/concepts among
agents.

The second usage of the term ontology is related to ALLL
agents. By the means of JAWS, each of ALLL agents has field
for its ontology string. This string contains description of list
of services that is agent able to provide. Since agent on mote
is able to receive messages and act according to them it is
able to run various services. This means that one ALLL agent
can provide more than one service. This creates necessity to
describe its services somehow in JAWS. So ontology in the
meaning we understand it in the relation with ALLL agents
is list of names of services that are separated by a delimiter
character.

Basically, we have two kinds of services in the JADE
manner of understanding. First kind is present in each ready-
to-deploy system created by application programmer. This type
of services is called Pure JAWS Services (subsection IV-A).
These services were created because there are common tasks
and routines that can be used generally in every application.
Second kind of services are ALLL Services (subsection IV-B).
Each ALLL Service is represented by one ALLL agent.

As a practical example of use of our services we designed
simple experiment. We created application agent that sub-
scribed for ALLL service of one agent. This ALLL agent
had simple task. It should come to tome then perform 10
measurements of temperature and then return back. This
experiment is quite minimalistic but at this stage it is enough
as a simple proof-of-work. For more about this experiment see

263 Zak et al.

IV. JAWS Services

[19].

A. Pure JAWS Services

Every service provided by JAWS is described by previously
mentioned ontology. Now we describe parameters used for
description of service.

• type – This field represents type of service (Pure JAWS
vs. ALLL).

• name – Name of service should represent its purpose (i.e.
topology).

• ontology – Ontology can represent some additional pa-
rameters for each service.

• periodicity – Some services are inherently periodical (i.e.
“all data from WSN” - when come any data from WSN
they are resend to agent that subscribes this service).
Some other services can be set up as periodic explicitly
(mainly those where agent or message for agent is sent
to network).

• period – How often should be service provided.
• address – Mote address to send possible agent
• agentSlot – Slot on mote for agent (default is 0, up to 4

agents).
First of Pure JAWS Services is service Data. This service

sends ASA data from network. What data is resent is decided
according to parameters of service. Type and name of service
are obvious. Ontology in this case represents type of data that
should be resent from Wireless Sensor Network. For example
string “temp” stands for getting temperature data. When left
blank all data are resent. This service is inherently periodical
so fields periodicity and period doesn’t have meaning here.
When address filled with -1 it means that data should be resent
from any mote. Numbers 2 and higher (address 1 is reserved
for Base Station) mean address of mote it wants data from.

Next Pure JAWS Service is service Limit. This service
sends notification when limit in incoming data is reached.
Ontology in this service represents limit, whose overstepping
is guarded. Before should be added one of characters {<,>}
that determine, which limit side should be guarded. Periodicity
is solved in the same way as in Data service. The same
situation is in the case of address and agentSlot.

Topology

Topology measurement is one of the key services in our
system. By obtaining topology we are able to provide one
service that is vital for larger networks. This service is routing
inside WSN. Our routing algorithm uses counted topology
for creating lattice. Through the lattice is consequently ALLL
agent driven to its desired location but this description is rather
simplifying and for more information about our routing algo-
rithm see[16]. Topology counting has also other interesting
features. One of them is visualisation of the network. The
visualisation can be seen by possible user of the network
if he does not have access to the deployed sensors. This
might be for example in some experiment with fish when
sensors are deployed in the water and there is no access to
them. In this section will be explained topology counting

from two points of view. The First is JADE agent’s point
of view. This communication is depicted on Fig. 2 where
is shown sequence of messages that is sent among group of
JADE agents and there are also shown messages to/from WSN.
The second point of view is part of the sequence diagram
where are messages aimed to WSN nodes. This algorithm in
WSN will be briefly also explained in this section. Firstly, we
will describe sequence diagram. On the left side highlighted
green there resides Application Agent (further AA). This is
the only one agent in the diagram that needs to be created by
application programmer. There can be seen that this agent only
needs to send one message to obtain topology of the whole
network. This task can be quite time consuming so for the
AA can be more reasonable to do meanwhile something else.
In JAWS is first agent in the chain Service Agent (further
SA). SA provides service of topology discovery. So when
requested it asks WSageNt Agent (further WA) for proper
discovery ALLL agent for the mote. WA is the only agent
that is aware of ALLL agents in the system, that is why he
is in the chain of messages. When is proper agent picked up
it is sent through Service Agent and Gateway Agent to some
networks mote. What happens on that mote is described in
some close future paragraph that deals with WSN part of the
topology discovery service. Important is that WSN part ends
up when comes back agent from the network. At this stage it
is necessary to point out that Gateway Agent possibly sends
other data from network by the time that data1 to dataN arrive
from network. It is Service Agents responsibility to recognize
and sort messages properly. Luckily we have specific class id
for agent that is created for getting network topology so we are
able to recognize messages for the right protocol. When ALLL
agent arrives from network that is signal for Service agent
that it can count topology from incoming data. Once topology
is count in the form list of coordinates [x,y] in virtual
space it can be sent to Application Agent and the service
by this message ends. We should mention that there is slight
possibility that topology ALLL agent does not come from
the network back (e.g. mote where it is present runs out of
battery). In this case we set up timeout for Service Agent. After
that timeout, Service Agent decides that something terrible
happened and sends failure message to AA. Timeout must
be set quite high in this case and if we have some clue about
WSN size we can update this timeout accordingly. Now we
get to the part of explanation where we show what happened
in previous conversation on the Wireless Sensor Network side.
We show quite simple pseudo code algorithm that shows what
is the life cycle of topology ALLL agent on a mote.

store(origin_mote,flash_memory);
broadcast(show_yourselfs);
obtain(list(id_neighbour, sig_str));
create(slave);
send(slave,home,neighbour_list);
wait(slave,here);
find(next_mote,neighbour_list);
OK: move(next_mote);
NO: move(origin_mote);

JADE Agents to Wireless Sensors: Easy Wireless Sensor Network Management 264

As you can see first agent stores on flash memory of the
mote information about its class and previously visited mote.
Then agent sends broadcast message to discover motes within
radio signal. When all motes react agent obtains list of visible
motes and how strong is signal to each mote. Now agent
creates other simple ALLL slave agent that should do simple
thing for him. It should get back to the Base Station where it
should deliver list of neighbours (and signal strengths) of mote.
Implicitly it delivers also information about mote id. Slave
agent is able to find path back home because of the information
(in flash memory) about previously visited mote by agent with
class of its masters. If on every mote is information about
previous one, agent is able by sequence of hops get ultimately
back to the BS. It also uses the same mechanism as its master
when visiting motes. On each mote writes to flash memory
information about previously visited mote. When slave give
to BS all the information it carries slave travels back to its
master. Now slave follows path that it created on the way to
the BS. Ultimately slave reports to its master that information
has been safely carried to the network sink and it is freed.
This follows last part of the algorithm and that is moving
of discovery agent to next mote. From the list of neighbours
agent picks mote that has not been visited by it (there is
no record about agent class and previously visited mote).
When such mote is found agent moves to it. In the other
case agent moves back to previous mote. From not visited
motes on the neighbours list is randomly picked one neighbour.
On the next mote algorithm repeats. When we look at the
higher picture we see basically applied backtracking algorithm
in WSN environment that ensures finding all motes within
network. This algorithm uses principles of scent algorithms
and Ant Colony Optimization algorithms to be able to find path
within WSN. So we connected two well known algorithms
to create algorithm that is able to gather data necessary for
establishing information about topology of the network. Last
part of the picture is processing of the data incoming to Service
Agent. It is the part that is depicted on Fig. 2 as count topology
in Service Agent. From the network came information about
each motes list of neighbours with their signal strengths. Now
we assign each signal strength relative value in the range
[0-255]. We make average values for each pair of motes
and now we have distance for each pair of motes. Now we
can use trigonometry to count relative coordinates for whole
network. We described more closely this problem in [18]. If
for some reason topology ALLL agent doesn’t come back to
Base Station the whole service fails. For this reason we have
set up timeout. That is the amount of time that Service agent
waits for ALLL agent to get back from the network. At the
end we should point out that protocol for obtaining topology is
only specification of FIPA subscribe protocol that we describe
in section IV-C but since Topology is JAWSs built in service
it is present in every deployed system and therefore there is
no need to refuse subscription. Refusing has meaning only in
ALLL services when requested service is not present in the
system.

Gateway
Agent

WSageNt
Agent

Service
Agent

Application
Agent

SUBSCRIBE
topology

REQUEST
top_agent

INFORM
top_agent

top_agent,
addr_of_mote

INFORM

wsn
send

data
1

data
N

data 1
INFORM

data N
INFORM

agt
backagt_back

INFORM

count
topology

INFORM
topology

data

FAILURE timeout

Fig. 2. Getting topology of network

B. ALLL Services

This type of service creates dynamic component that reflects
effort of JAWS to be flexible and help with design of final
application. As mentioned previously, each ALLL Service is
represented by one ALLL agent. Type of service must be set to
ALLL in this case. Name of the service is the name of ALLL
agent. Ontology represents agent services as described above.
Periodicity in ALLL service type represents the possibility to
send agent to network multiple times (i.e. we create agent
that travels through network and gathers data from individual
motes, which is task that is meaningful to run in periods). Field
address is mandatory because JAWS needs to know where to
send ALLL agent. Field agentSlot defaults to 0 when not filled.

This is the part of JAWS that enables JAWS to act differently
in different applications. All ALLL agents must be known at

265 Zak et al.

Gateway
Agent

WSageNt
Agent

Service
Agent

Application
Agent

order,
id_of_mote
"order"

REQUEST

agent
orders

INFORM
agent
orders

"order"
addr_of_mote

INFORM

wsn
send

INFORM
order
sent

FAILURE

REQUEST

test
agent

Fig. 3. Sending order to ALLL agent

the time of designing application and design of ALLL agents
is in the hands of application programmer. In the future we
want to help application programmer with creation of ALLL
agents by providing methodology that will guide him through
design phase when creating ready-to-deploy system.

Basically in our understanding ALLL agent is a plan for
a mote to do something meaningful. In agency library of
plans proved to be sufficient enough instead of creating plans
from scratch. So we provide some default agents for known
and frequently performed tasks. In next paragraphs we will
describe protocol for using ALLL services. We try to outline
situations that can occur during ALLL service use.

Since using ALLL service falls to the same situation as
using Pure JAWS services we use again subscribe protocol. In
this case protocol form is quite similar as in our previously
stated example with topology measurement. In principle Ap-
plication Agent again subscribes for service and then waits for
data sent from network. There is only one change. It is possible
that agent in network is not supposed to send messages (or
itself) back to JAWS. In this case there are not incoming data
from network as on Fig. 2. Application Agent only subscribes
for service and then agent is sent and service ends by this
step. This might be the case when ALLL agent should for
example go through whole network and inform agent on each
mote about some fact. As an example we might say that we

Service AgentApplication Agent

subscribe

refuse

agree

inform

failure

[refused]

[agreed]

[failed]

0-n

Fig. 4. Subscribe Protocol

need to lower transmitting power of the radio module for each
mote. We can send agent that orders each mote platform about
lowering its radio power.

There is one other situation when we send only message to
network without waiting for reply. Since ALLL agents are able
to react on incoming messages we need a protocol in JAWS
that enables Application Agent to send order to agent on mote.
This situation is depicted on Fig. 3e. In this situation is firstly
send ACL message with REQUEST performative to Service
Agent. In contents of this message must be id of mote to send
order to (including agentSlot) and of course order itself. Each
ALLL agent has list of orders (strings) that it is able to react
to when it comes to its input base.

Service Agent keeps list of textitagent on mote that is the
list that stores information about mote occupancy with agents.
When request from AA comes Service Agent checks this list
and finds out what agent in on requested mote on specified slot.
Subsequently Service Agent asks WSageNt Agent if ALLL
agent is able to react to given order. If this test goes through
SA sends through Gateway Agent order to requested mote.
Otherwise FAILURE is sent to AA. Now two situations can
occur. When ALLL agent is supposed to response to order
from AA it sends back some data (or itself). In the case when
order does not imply some sort of reaction that leads to sending
data back service ends by sending order to WSN.

C. Subscribe protocol

There are several used protocols in JAWS. Some of them
are standard and some others are designed for specifically
for JAWS. In this section we describe protocol used for
subscription of service. This is standard subscribe[12] protocol
as it is defined by FIPA organisation. Protocol is depicted in
Fig. 4. Initiator is Application Agent and responder is Service
Agent. Firstly, initiator creates object with ontology describing
service it wants to use and sends ontology to responder.
Service Agent checks whether ontology is filled correctly

JADE Agents to Wireless Sensors: Easy Wireless Sensor Network Management 266

(according to rules indicated in previous sections). After this
check it is able to respond to initiator. Sending agree or refuse
message is voluntary but we use it because we need to have
the opportunity to notify the user that service description was
filled in the wrong way. When the message is filled correctly
Service Agent sends agree and refuse otherwise. At this point
service is subscribed for particular agent. Finally when comes
proper data Service Agent resends them to Application Agent.
Last portion of this protocol is deregistration of service. This
works in the same manner as in the case of FIPA specification
[12].

Since we follow FIPA standards we use Directory Facilitator
as said before. Now we briefly describe basic principles that
are used when registering JAWS services by DF. At the start
of the system we register Pure JAWS services because they
are changeless. Then Service provider obtains list of ALLL
agents known by system. These agents are then registered
as ALLL Services. Now, when services are exposed to DF,
Application Agent can use prepared behaviour to obtain all
exposed services then pick appropriate one and subscribe by
Service Agent.

In this subsection we describe some of the problems we
encountered during experiments with our system. Biggest
problem of all is the problem with data incoming from the
network. There are two possible data types that are able to
come from the network. First data type are data that are sent
by an ALLL agent that resides on mote with some id (address).
This data come in the form of tuple. Example is shown bellow.

((5),((1,12.0)(2,12.5)(3,13.2)(4,12.7)))

First value (5) is id of mote that sent the message. Rest of the
message represents values measured by mote in some period of
time. We can see that there are 4 indexed measurements. There
are measured some temperature values and we can see that
temperature was around 12C. There are two problems with this
example. First problem is cosmetic. The temperatures shown in
example aren’t really coming from the network because mote
measures and stores only resistivity of the proper sensor. This
resistivity comes to Base Station and then must be recounted
according to proper formula so we get real temperature (light,
humidity, ...) value. Next problem is also related to incoming
values from sensors. The problem is that if mote has more than
one sensor we aren’t able to decide which sensor are incoming
data from. When only resistivity of sensor comes in message
we don’t know what sensor performed the measurement. That
implies we need another mechanism to recognize content of
message from network. We describe partial solution of this
situation in some close future paragraph. The other data type
possibly incoming from network is whole agent. Since we
have in packets information that this is agent message we
can handle it properly. Service agent gets the information that
came some ALLL agent. From ALLL agents fields we are
able to obtain all necessary information. Most important for
us is mote of origin that is mote in WSN that ALLL agent
came from. Next useful information is agent name (as a service

name, described in IV). We can also use agent id, agent class
(topology example) and basically any of the fields of ALLL
agent. For data we exploit agents belief base.

Simulation: We can categorize ALLL agents into two
kinds by the mechanism they measure values and then send
informations into Base Station (JAWS). In first case agents
can measure some values periodically and after measurement
they send data (or itself) into Base Station. In the other case
they measure something (probably periodically) and in the
case of some event they send message to JAWS. Typical
example is our service Limit. In this service if limit of some
value is reached or overstepped mote sends message about this
event to JAWS. In the first case we can obtain information
about agent time plan (it sends messages periodically so
we have information that in some specific timeslots comes
message with specific value). This looks simple. It is enough
to store period and we know when a message with data arrive.
But it is not that simple. Since WSN is highly distributed
system it is possible that agent on mote will be asked to stop
measurement for a while and do something else for other
agent on some close mote. Our period has stayed the same
but it has shifted for a small amount of time. Now time
scheduling (in JAWS) of message sending is broken and in
JAWS we have no idea what might happen. In the end we
don’t actually know what really happens in the WSN. We just
know what should happen. So we proposed another solution.
We simulate the whole WSN on personal computer (Fig. 5).
We named our simulator GDEFALL, which is abbreviation
for Graphical Desktop Environment For ALLL agents. This
tool enables us to simulate in real time whole deployed
network. Current state-of-art of the simulator is following.
At the beginning we create WSN (in simulator) by hand
(we have already known topology) and start simulation at the
same time WSN motes start. At the beginning we populate
both real and simulated WSN with ALLL agents. This task
is in the hand of Application agent. It subscribes for ALLL
service on each mote. Now almost everything what happens
in real network also happens in simulated network. Also both
networks send its messages to JAWS. So, when message comes
from simulated WSN we have information that the same
message (well not actually the same, but with the same mote
id) should come from real network. If it does not come we
know that something wrong happened (e.g. mote run out of
battery). As a conclusion, simulation enables us to partially
recreate sequence of messages as they should come from real
network). This means that simulation helps us to lower a little
bit degree of uncertainty in WSN. In the later case agent
messaging is driven by event so we have no clue when a
message might come. In this case simulation is not helping.
Event is produced by real WSN environment, but we can’t
simulate this (do we know when temperature outside is up
to some limit?) so all measurements in simulator does not
produce values. Measurement is represented by storing some
default value. In this part of communication, when message
sending is triggered by event, we are unable to simulate
sending messages from network to JAWS. That is why we
stated before that in simulation happens almost everything
the same way as in real WSN.

267 Zak et al.

V. Problems and Solutions

Gateway Agent

H
T
T
P

JADE

Service Agent

WSageNt Agent

JAWSDirectory
Facilitator

Application
Specific
Agent

REAL WSN

COM4

2
9

7

56

B
S
C
O
M
M

Base
Station

1

4

2
9

7

56

Base
Station

1

GDEFALL

simulated
wsn

H
T
T
P

COMPU

TER

Fig. 5. Real time simulation of the observed network

In this paper we briefly described our system called JAWS.
We also introduced motivation behind creating such a system.
Then we described architecture of the system from the point
of view where services played main role. At last, we presented
services and their usage in our system. With services are
also connected protocols. We described some of the main
protocols used in our application. We also presented some
open problems a some partial solutions that we performed to
lower uncertainty of data coming from the network.

In conclusion we created system that is able to control
WSN. This system highers the abstraction, which we use to
operate WSN and also make manipulation with WSN motes
easier.

In the future we want to create whole methodology that
will guide application programmer through the whole process
of creating application specific system. This methodology
should be supported by JAWS and possibly other created tools

including presented simulator. In our methodology we set up
goal to safely guide application programmer through series
of steps that will lead to working system that is ready-to-
deploy. Our methodology will consist from two interconnected
phases. In one phase it is necessary to create agent system
from JADE agents. Here we need to specify what will created
system do. In this phase WSN is abstracted and motes are
understood as sensors (in agent meaning of this word) of JADE
agent. This is first part of the problem. In second part it is
necessary to pick ALLL agents from library of agents or create
application specific agents. In our understanding each ALLL
agent represents “plan” for one mote. Application Agent can
use these plans for motes.

This work was supported by the European Regional De-
velopment Fund in the IT4Innovations Centre of Excellence
project (CZ.1.05/1.1.00/02.0070).

[1] Mainwaring, A.: Wireless Sensor Networks for Habitat Monitoring;
Communications of the ACM; 2002/6; vol. 47, issue 6; pp. 34–40; ISSN
0001-0782.

[2] Fok, Ch., Roman G., Lu Ch.: Agilla: A Mobile Agent Middleware
for Self-Adaptive Wireless Sensor Networks; ACM Transactions on
Autonomous and Adaptive Systems; 2009/7; vol. 4; issue 3; p 26; ISSN
1556-4665.

[3] Zboril, F., Horacek, J., Spacil, P.: Intelligent Agent Platform and Control
Language for Wireless Sensor Networks. In: Proceedings of 3rd EMS;
Atny; GR; IEEE CS; 2009; p. 6; ISBN 978-0-7695-3886-0.

[4] Zboril, F., Spacil, P.: Automata for Agent Low Level Language Interpre-
tation. In: Proceedings of UKSim 2009; Cambridge; GB; IEEE CS; 2009;
p. 6; ISBN 978-0-7695-3593-7.

[5] J. Hill. System Architecture for Wireless Sensor Networks. PhD thesis,
UC Berkeley, 2003.

[6] Welcome to the foundation for Intelligent Physical Agents; [online] [cit.
2012-06-02]; http://www.fipa.org

[7] Bellifemine, F., Poggi, A., Rimassi, G.: JADE: A FIPA-Compliant agent
framework. In: Proceedings of Practical Applications of Intelligent Agents
and Multi-Agents; 1999/4, pp 97-108.

[8] Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A
Practical Guide. John Wiley and Sons, 2004. ISBN 0-470-86120-7

[9] FIPA Agent Management Specification; [online] [cit. 2012-06-02]; http:
//www.fipa.org/specs/fipa00023/XC00023H.html# Toc526742640

[10] What is an Ontology?; [online] [cit. 2012-06-028]; http://www-ksl.
stanford.edu/kst/what-is-an-ontology.html

[11] Horacek, J., Zboril, F.: WSageNt: A case study, In: Proceedings of
CSE 2010 International Scientific Conference on Computer Science and
Engineering, Kosice, SK, 2010, ISBN 978-80-8086-164-3.

[12] FIPA Subscribe Interaction Protocol Specification; [online] [cit. 2012-
06-29]; http://www.fipa.org/specs/fipa00035/SC00035H.html

[13] Janousek V., Koci R., Mazal Z., and Zboril F.: PNagent: A Framework
for Modelling BDI Agents using Object Oriented Petri Nets, In: Proceed-
ings of 8th Conference on Intelligent Systems Design and Applications
ISDA08. IEEE Computer Society, 2008, pp. 420425.

[14] Woolridge, M., Hbner, F.J., Bordini, H.R.: Programming Multi-Agent
Systems in AgentSpeak using Jason, Chichester, West Sussex: John
Willey & Sons Ltd., 2007. pages 273. ISBN 978-0-470-02900-8 (HB).

[15] Koci. R., Zboril, F., Zak, J.: Integrating Multiple Modeling and De-
velopment Tools for Realization of Distributed Intelligent System, In:
Proceedings of the 10th International Conference on Intelligent Systems
Design and Applications, Cairo, EG, IEEE CS, 2010, s. 658-663, ISBN
978-1-4244-8135-4

[16] Horacek, J., Zboril, F., Hanacek, P.: Agent Aided Routing in Wireless
Sensor Networks, In: Proceedings of CSE 2012 International Scientific
Conference on Computer Science and Engineering, Kosice, SK, TU v
Kosiciach, 2012, s. 119-126, ISBN 978-80-8143-049-7

[17] Wang, K. I., Abdulla, W. H., Salcic, Z.: A MULTI-AGENT SYSTEM
FOR INTELLIGENT ENVIRONMENTS USING JADE; IEE Seminar
Digests; 2005; vol. 2005; no. 11059; pp 86-91.

JADE Agents to Wireless Sensors: Easy Wireless Sensor Network Management 268

VI. Conclusion

VII. Future Work

ACKNOWLEDGMENT

REFERENCES

[18] Zak, J., Horacek, J., Zboril, F., Koci, R., Gabor, M.: Remote controlling
and monitoring tool for wireless sensor network using WSageNt plat-
form, In: Proceeding of the 2nd International Conference on Computer
Modelling and Simulation, Brno, CZ, UITS FI VUT, 2011, s. 1-8, ISBN
978-80-214-4320-4

[19] Zak, J., Zboril, F., Hanacek, P.: Jade Agents to Wireless Sensors: Case
study, In: Proceedings of CSE 2012 International Scientific Conference on
Computer Science and Engineering, Kosice, SK, TU v Kosiciach, 2012,
s. 95-102, ISBN 978-80-8143-049-7

[20] Zboril, F., Koci, R., Zboril, F., V., Janousek, V., Mazal, Z.: T-Mass v.2,
State of the art, In: Second UKSIM European Symposium on Computer
Modeling and Simulation, Liverpool, GB, IEEE CS, 2008, s. 6, ISBN
978-0-7695-3325-4

[21] Zak, J., Horacek, J., Zboril, F., Koci, R., Kral, J.: JADE Agents Used
for Wireless Sensors Control: System Based on Services, In: Proceedings
of the 2012 12th International Conference on Intelligent Systems Design
and Applications (ISDA), Kochi (Cochin), IN, 2012, s. 6, ISBN 978-1-
4673-5118-8

Jakub Zak (born 1985, Dacice) is leading author of this
paper. This author obtained his Master’s degree in 2009 at
Faculty of Information Technology. Author is now student of
Ph.D. study program on Faculty of Information Technology
at Brno University of Technology, Czech Republic. He is
studying his final year of his Ph.D. studies. Among his
interests belongs all related to agent oriented technologies
and modelling systems. Additionally author is interested in
methodologies that deal with agent systems creating.

Jan Horacek (born 1985, Jihlava) is a Ph.D. student at
Brno University of Technology, Czech Republic. He obtained
his Master’s degree in 2009 at Faculty of Information
Technology at University in Information Technology. His
research is aimed to wireless sensor networks, artificial
intelligent agents and routing protocols.

Frantisek Zboril jr. (born 1974, Olomouc) is an assistant
professor at Brno University of Technology, Czech Republic.
He obtained his Ph.D. In 2004 at Faculty of Information
Technology of this University in Information Technology. His
major interests include artificial agents, their application in
the area of modelling distributed systems and applications for
wireless sensor networks.

269 Zak et al.

Author Biographies

