
International Journal of Computer Information Systems and Industrial Management Applications.
ISSN 2150-7988 Volume 15(2023) pp. 43-58
©MIR Labs, www.mirlabs.net/ijcisim/index.html

Submitted: 5 Jan, 2023; Accepted: 20 May, 2023; Publish: 9 June, 2023

Extending Semantic based Techniques for
Policy-based Slicing of Database Program

Anwesha Kashyap, Angshuman Jana

Indian Institute of Information Technology Guwahati, Guwahati, India
{anwesha.kashyap21, angshuman}@iiitg.ac.in

Abstract: The innovation of the program slicing technique
brings a revolution to address several issues (e.g. code un-
derstanding, debugging, maintenance, testing, etc.) in the
more complex and large information systems. Over the
past, many slicing techniques have been proposed, how-
ever, all these existing approaches did not consider the ex-
ternal database states. Moreover, the majority of the pro-
posed slicing approaches are syntax-based and they do not
consider the properties of variables and database attributes.
Therefore, existing techniques are not directly applicable
to data-intensive programs in information system scenar-
ios and majority of them fails to compute precise slicing
results. In this work, we propose a policy-based slicing
framework for data-intensive programs. The policies are
integrity constraints that are defined on data as per the
business goal and kept in a backend database. We design
our propose framework using the data dependency graph
of data-intensive programs. We refine (by removing false
alarms) the data dependency graph using semantics-based
techniques, Condition-Action Rules and Hoare Logic. This
refined graph yields precise slicing results w.r.t the policies
of data-intensive programs.
Keywords: Database Program, Program Slicing, Depen-
dency Graph, Semantics Analysis.

I. Introduction

Static analysis is acknowledged as a key method for
gathering data on how computer systems behave for
all potential inputs without actually executing any
code [1], [2]. Even though many non-trivial problems
about program behaviour remain intractable in reality,
decades of continuous and ongoing study in this field
have made it possible to solve them [1], [3]. Majority of
the static analysis approaches in the literature leverage
dependency information (either explicitly or implicitly)
between program statements and variables to address
a variety of software engineering issues. Program slic-
ing [4], information-flow analysis [5], optimization [6],
code-understanding [7], code-reuse [8], taint analysis
[9] are some examples of static analysis techniques.
The concept of program slicing [10] evolved as a help-
ful tool for extracting statements from programs that

are relevant to a specific behaviour. Mark Weiser ini-
tially introduced the slicing approach in 1984 [11]. In
this work, the author described a static program slicing
that is an executable subset of program statements that
maintains the behaviour of the original program at a
certain program point for a subset of program variables
for all program inputs. It contributes to the program’s
simplicity by focusing on the specified criteria. The
slicing technique eliminates a section of the program,
resulting in a subset of the original program with no
effect on the semantics of the slice.
Data dependencies are unavoidable in the program
when one piece of data needs another piece of data for
execution. Therefore, one of the major components of
program slicing is to recognise these dependencies and
include them into the slices produced, maintaining the
program’s accurate syntactic representation. Numer-
ous slicing approaches for the various programming
languages have been developed based on this concept
[12, 13, 14, 15]. Majority of the existing literature on
slicing approaches exclusively mentions only impera-
tive languages [4], and a very few important studies
have been done on the slicing of database applications
[12, 16, 14, 17]. Initially, Sivagurunathan et al. [15]
dealt with the presence of external I/O states by putting
pseudo variables inside the program to alert the slicer
of the hidden I/O state. Tan and Ling [16] extended
this concept to programs requiring database operations
and used a similar approach as of [15]. Willmor et
al. [12] suggested the Database-Oriented Program De-
pendence Graph (DOPDG), a variant of the Program
Dependence Graph, which takes into account two new
forms of data dependencies: (i) Program-Database De-
pendence between a program and a SQL query state-
ment and (ii) Database-Database Dependence between
two SQL statements. Cleve’s work [14] is primarily con-
cerned with the creation of System Dependence Graphs
(SDG) for both the host and embedded languages.
There are several applications of slicing. Some of the
applications are as follows:

(a) Software maintenance. Software maintenance is fre-
quently followed by a re-engineering work, in

MIR Labs, USA

Extending Semantic based Techniques for Policy-based Slicing of Database Program 44

which a system is changed in order to enhance
it. The concept of program slicing is applied to the
software maintenance problem by expanding the
notion of a program slice to a decomposition slice.
A part of the software is extracted which is actu-
ally required. Using this technique also reduces
the time and effort.

(b) Error debugging. When debugging programs, pro-
grammers mentally slice the code. The invention
of an automated approach to aid in debugging op-
erations by condensing the issue to a few lines or
program statements was motivated by the need to
support this mental debugging. That is, the pro-
gram would eliminate any code that was unrelated
to the collection of variables from which the error
came and hence could not have been the cause of
the error. This enables the debugger to focus on
the lines or statements important to the error.

(c) Code understanding. The majority of the code in a
program is unrelated to what you are interested in
while studying it. Program slicing offers a practi-
cal method for removing "irrelevant" code. Using
slicing we can extract a particular function or a set
of statements that will help us to understand the
flow of the program.

(d) Testing. Slicing facilitates program decomposition,
which speeds up and improves the effectiveness
of testing. Slicing is done according to certain
slicing criteria. It allows for the identification of
inter-related modules, which may subsequently be
evaluated independently without disrupting the
remaining program. Program slicing makes it pos-
sible to understand programs by breaking down
them into slices, so that different testers may be
given the duty of testing.

Therefore, slicing plays an important role for several
software engineering activities. A common challenge
in all of the aforementioned application contexts is to
obtain more precise analysis results, that can be fulfilled
if we are able to compute more precise slicing results.
However, a major drawback of static analysis is that
it gives false results which considerably reduces the
development speed. The best strategy to decrease false-
positives is to enable the analytic behaviour to be tuned
to particular requirements.
Over the past, many slicing techniques have been pro-
posed, however, all these existing approaches did not
consider the external database states. Moreover, the
majority of the proposed slicing approaches are syntax-
based and they do not consider the properties of vari-
ables and database attributes. Observe that, the syn-
tax based approaches account the dependencies based
on the syntactic presence of variables in the definition
of other variables. However, if we focus on the ac-
tual values in place of the variables then we experi-
ence that it is a false alarm [18, 19]. For instance, the
value assigned to x does not depend on y in the state-
ment x = z+ y− y, although y occurs in the expression.

Therefore, the syntactic approach, may fail to compute
the optimal set of dependencies [18]. On the other hand,
in the literature, we did not found much study of slic-
ing on data-intensive programs in information system
scenarios. Therefore, this encourages researchers to use
semantics-based calculations to produce precise slicing
results.
We intend to address the following two major research
aims in this paper 1:

• To develop a slicing framework for data-intensive
programs in information system scenarios where it
considers the external database states, and

• To obtain more precise slicing results.

To summarise, the following are our contributions to
this paper:

1. Applying more suitable semantics based approach
to refine the data dependency graph.

2. Defining policy and computing slicing w.r.t poli-
cies and experiencing the preciseness of the slicing
results.

3. Experimental evaluation on a collection of open-
source, database-driven JSP benchmark codes.

Our initial theoretical proposal [20] simply takes into
account the condition action rule based approach. Al-
though, it is an efficient semantics based analysis, how-
ever, it has some major drawbacks which needs to be
considered. Therefore, we need more precise semantics
based analysis to identify and remove the false depen-
dencies present in the slicing results. In this paper, we
extend our previous work [20] to make it more pow-
erful by considering more suitable semantic based ap-
proach Hoare Logic to obtain optimised slicing results.
We consider the syntax-based dependency graph and
refine it (by removing more false dependencies) using
Hoare Logic. Then we perform the slicing w.r.t the pol-
icy on this refined dependency graph that leads to more
precise slicing result.
The structure of the paper is organised as follows: Sec-
tion II shows the preliminaries and background of our
work. In Section III, we discuss the literature’s cur-
rent state of the art. An illustration of our running
example is provided in Section IV. In Section V we de-
scribe our proposed framework where we have shown
the evolutions of dependency graph and then proposed
semantic-based approaches for the refinement purpose.
The experimental results are shown in Section VI. Sec-
tion VII contains the discussion of the work. Finally,
Section VIII concludes our work.

II. Preliminaries

In this section, we illustrate the fundamentals of pro-
gram slicing through examples. Then we discuss poli-
cies in terms of integrity constraint of database applica-
tions w.r.t the goals of organisations.

1This work is a revised and extended version of [20].

45 A.Kashyap, A.Jana

A. Slicing

Program slicing is a process where statements from a
larger source code that are connected to a certain be-
haviour are extracted [11]. The program’s sections that
are unrelated to those values are removed to create a
slice. Typically, the point of interest is noted in the pro-
gram by adding line numbers that correspond to each
primitive statement and branch point. A slice is useful
for program debugging, testing, software maintenance,
measurement, program parallelization, program com-
prehension and other tasks because it is an independent
program that is ensured to accurately reflect the original
program in the context of the designated subset of be-
haviour. These applications of program slicing results
from two characteristics that they possess. We simply
need to understand a portion of a program while chang-
ing it, not the entire thing. This characteristic leads
to applications such as maintenance, debugging, and
testing. Rather than grasping the entire program im-
mediately, we might first comprehend specific pieces,
then comprehend the association between the sections.
This characteristic enables measurement, program par-
allelization, program understanding, and so on. Slicing
is computed using either backward or forward slicing
algorithm w.r.t the slicing criteria. Let us discuss the
slicing criteria, backward and forward slicing as fol-
lows [11]:

Slicing Criterion [11]: A program P’s slicing criterion is
a tuple with the values<i, V>, where i is a statement and
V is a subset of P’s variables. We will see the illustration
of slicing in example 1.

Backward Slicing [11]: Backward slicing is a technique
used in program slicing, a method for reducing the size
of a program by removing parts of the code that are
not relevant to a particular analysis or manipulation.
Backward slicing starts from a specified set of program
points (e.g. a set of statements) and traces backwards
through the program, identifying all program points
that are needed to compute the values of the specified
points. The resulting slice consists of all the program
points that were traversed during the backward slicing
process. Backward slicing is used to answer questions
such as: "What parts of the code could have affected
the value of a particular variable?" or "What is the mini-
mum amount of code necessary to understand a partic-
ular error or bug?" By removing unneeded parts of the
code, backward slicing makes it easier to understand
and analyze the behavior of a program.

Forward Slicing [21]: Forward slicing is a program
slicing technique that concentrates on the effect that a
change in a program’s input or initial conditions will
have on the values of its outputs. It involves creating
a slice of the program that includes all statements that
might affect the value of the program’s outputs, and
removing all statements that are not relevant to the cal-
culation of those outputs. This allows a programmer
to isolate the part of the code that is responsible for
producing a particular result, making it easier to un-

derstand and modify the program. Forward slicing in-
volves starting from a particular output, and tracing the
flow of data backwards through the program to identify
the statements that contribute to the calculation of that
output. The resulting slice consists of the statements
that must be executed in order to produce the specified
output, and can be used to simplify the program or to
isolate the cause of a bug. Forward slicing is typically
performed using data flow analysis, which tracks the
flow of data through the program to determine which
statements are necessary to calculate a particular result.

Example 1 Consider a program P and the slices of P w.r.t
the slicing criteria s1 = <9, sum> and s2=<10, mul>.

1. int i, sum, mul; 1. int i, sum; 1. int i, mul;
2. i = 1; 2. i = 1; 2. i=1;
3. sum = 0, mul =0; 3. sum = 0; 3. mul = 1;
4. while (i≤10) 4. while(i≤10) 4. while(i≤10)
5. sum = sum + i; 5. sum = sum + i;
6. mul =mul * i; 6. mul =mul * i;
7. i++; 7. i++; 7. i++;
8. printf ("%", i);
9. printf ("%", sum); 9. printf ("%", sum);
10.printf ("%", mul) 10. printf ("%", mul)

Figure. 1: Program P | Slicing criteria s1=<9, sum> |
Slicing Criteria s2= <10, mul>

The slices in the preceding example are computed with
the original program P in Fig. 1. In this scenario, we
look at the variables sum and mul as well as program
points 9 and 10. As a result, only those statements from
the original program are taken out that have a direct
influence on those variables. The slice section of P with
respect to the slicing criteria s1=<9, sum> and s2= <10,
mul> is illustrated in Fig. 1.
As we can see, slicing aids in providing statements that
are directly or indirectly engaged in the computation,
reducing the cost of going through each line of code in
the original program to discover the relevant lines to
edit. As a result, with large software with thousand
lines of code, it is extremely difficult to determine the
origin of a defect or which line’s update is necessary.
We may lessen the effort required to handle this issue by
using program slicing, which provides us with a portion
of the program to work with, without interfering with
the original program in any way. It saves time and
money while also improving program understanding.

B. Integrity Constraints

The integrity constraint is represented in terms of poli-
cies and is imposed in an information system as per
the business goal. Policies are collection of rules or pre-
defined rules that maintains the quality and consistency
of data in a database. Consumer needs might shift from
time to time, causing policies to change. Basically, poli-
cies are business rules or integrity constraints to fulfill
the business goal [22]. For instance, certain banks in
a financial system have a policy stating that the mini-
mum amount of a specific account must be more than or
equal to $50. Consider another example, in the telecom
industry if they want to incorporate a change in a sin-

Extending Semantic based Techniques for Policy-based Slicing of Database Program 46

gle plan, it will be easier to extract the part of the code
which will be affected by the change. It will be easier
this way since it will reduce the time to find that single
piece of code where change must be done, from the large
code the original program included. Hence, changing
of policies can be incorporated seamlessly since it will
be easier and efficient without hampering the original
program in any way [23]. In this work, the policy is
considered as an slicing criteria and w.r.t this criteria,
we extract the set of semantically equivalent statement
to maintain the policies.

Example 2 Consider the program Q in Fig. 2 which is an
example of a bank account that calculates the simple interests
of customer accounts. Initially, the rate of interest was 7%.
The bank decided to increase its interest rate from 7% to
7.5%. After the new policy has been employed the variable
which is responsible for the calculation of the interest rate will
be changed. Hence, statement 3 and statement 5 will have
to be modified since the rate of interest has been increased.
Therefore the important lines of the code should be taken care
of which can be computed using slicing if we consider this
type of constraints as a policy.

1. float interest(float p, float r, float t)

2. {

3. r = 7;

4. float si;

5. si = (p * r * t)/100;

6. return si;

7. }

Figure. 2: Program Q

III. Related Works

The concept of program slicing which was first put out
by Mark Weiser [11] in 1984, has evolved over time.
The produced slices consist of statements that have the
potential to change the values of the slicing criteria vari-
able. Since then, researchers have utilised this idea to
compute slices of several programming paradigms [24],
[25], [21], [26]. Despite the fact that [25], [21] focuses
mostly on the application and advancements of pro-
gram slicing, [27] attempts to discover an implementa-
tion for an interactive software development environ-
ment.
Program slicing applications have now evolved into
powerful software tools that are used at various phases
in the life cycle of software development, such as pro-
gram understanding, automated computation, code
verification, testing and software maintenance, quality
assurance, program integration, cohesion etc. [28], [25],
[29]. Several methods have been proposed for slicing,
including dynamic slicing [11], [25], amorphous slicing

[25], [30], static slicing [11], [25], quasi-static slicing [25].
The Program Dependence Graph (PDG) may be used
to approach static slicing [27], [6] by including both
data and control dependencies of the program. A PDG
has edges that reflect the control and data dependen-
cies between statements and vertices that represent pro-
gram statements. The slice with relation to the slic-
ing criterion is computed from a vertex in the PDG
that is originally associated with the slicing criterion.
To enumerate the slices by compiling statements and
predicates, the control flow graph (CFG) or PDG of
the program is traversed backward beginning with the
programmer-specified slicing criterion. Another tech-
nique given by Bergeretti and Carre [31] is to define
slices in terms of information-flow relations obtained
from a programme in a syntax-directed manner. The
results of Denning and Denning [32] in secure informa-
tion flow are formalised in this connection. Numerous
PDG representations have also been proposed through-
out the years [28], [25], depending on the desired usage.
During the past few decades, several program slicing
methodologies based on PDG representation or modi-
fications, such as Dynamic Dependence Graph, System
Dependence Graph etc. have been created [25], [28]. In
general, data dependence is typically used to explain
the essential data flow of the program, whereas con-
trol dependency is derived from the original control
graph and illustrates just the program’s critical control
interactions. PDG-based slicing, on the other hand, is
rather restricted since it must be computed or imple-
mented in relation to the slicing criteria established at
the given program point. Because the concepts of pro-
gram slicing and data provenance are similar, it may
be utilised to exploit the usefulness to transfer ideas,
tools, and approaches for future study. Danicic et al.
[33] proposed a parallel technique for calculating back-
ward, static slices. The CFG is transformed into a net-
work of parallel processes to do this. Messages naming
the necessary sets of variables are sent and received by
each process. Specification-based approaches were pro-
posed by Chung, Lee et al. [34] to make program slicing
easier. By deleting assertions that are not pertinent to
the specification for the slice, one may use the specifi-
cation to produce slices that are more exact. Their ap-
proach is pre/post condition-based. This specification-
based slicing is useful for extracting reusable compo-
nents, reconstructing programs, and other tasks.
In [6], authors have used PDG to present and show ef-
ficient and powerful program transition for compiler
optimization. The importance of it is that it allows the
programmer for potential parallelism. The authors ex-
pect PDG as the basis for process partitioning for mul-
tiprocessors. The authors of [35] proposed an applica-
tion of program slicing in context to data provenance as
well. Provenance can be defined as the understanding
and troubleshooting of database queries by giving us an
explanation of the results through its input. Program
slicing gives us a concise explanation of the error in
the program or any aberrated behaviour present in the
program in the form of slice which shows only the part

47 A.Kashyap, A.Jana

relevant to the error. Data provenance has a compelling
analogy to program slicing since it also tries to explain
part of the result of a query using the relevant part
of the input database. Willmor et al. [12] introduced
a PDG version termed as Database Oriented Program
Dependency Graph (DOPDG) which is in accordance
to the traditional PDG, however, it has two extra de-
pendencies which is discussed in the further section.
However, to obtain finer slices, [12] addressed the issue
of false alarm which is a drawback in case of syntax-
based DOPDGs. There needed to be semantics based
analysis to overcome such false alarms.
Evaluations of various slicing methods have also been
made as more and more varieties of slicing methods
have been developed. These assessments [36, 37, 38, 39,
21, 40, 41] largely focused on the characteristics of slic-
ing, including its effectiveness, the size of the slices that
arise, applications, and how slicing interacts with other
types of source code analysis. Another new approach
called Symbolic Program Slicing (SymPas) has been de-
veloped in [42] where the authors perform dataflow
analysis on LLVM and offer a lighter-weight alternative
to traditional slicing methods. This paper examines the
SymPas approach and its potential benefits. In [17],
authors proposed a new approach called srcClone that
can detect both syntactic and semantic code clones us-
ing a slice-based scalable method. Their approach de-
termines code segment similarity by analyzing the sim-
ilarity of the corresponding program slices. They uti-
lize a lightweight and readily available program slicer,
which enables their clone detection approach to scale
more efficiently.

IV. Running Example

Let us take a database program fragment “Prog” shown
in Fig. 3. The program implements several functional-
ity of an Employee Management System (EMS). And it
performs various kinds of operation.
The database code snippet “Prog” raises employees’
salaries depending on their years of employment with
the company. The percentage increase in the salary is
stored in two variables ’x’ and ’y’ which are depicted
in statements 2 and 3 respectively. The increase in the
salary is 5% for all the employees serving for a mini-
mum of 3 years and a maximum of 45 years, which is
shown in statement 8, and 15% for employees serving
for more than 20 years which is shown in statement 5.
Finally, the average of the salary is computed for all
the employees in that organisation. Note that we illus-
trate our propose framework using this example in the
subsequent sections.

V. Proposed Framework

In this section, we design our framework using se-
mantic based methods which improves the syntactic
Database Dependency Graph (DDG) to obtain more
precise and accurate slicing results. Let us recall the
syntax-based DDG construction from [12, 43].

A. Evolutions of Dependency Graph

At first, we discuss the evolution of dependency graph.
In general, a database dependency is a constraint that
governs how attributes relate to one another. A depen-
dency graph is a program intermediate form that re-
veals both data and control interdependence between
program statements [6]. Nodes represent program
statements in dependency graphs, whereas edges indi-
cates data and control dependencies. Program Depen-
dence Graph (PDG) is playing crucial roles in a wide
range of software-engineering activities, e.g., program
slicing, code-reuse, language-based information flow
security analysis [44] code-understanding. The graphi-
cal depiction of control flow or computation during the
execution of programs or applications is called a con-
trol flow graph (CFG). Basically a control flow graph
is a visual representation of a program’s control flow,
which shows the sequence of operations executed in the
program and the conditions that control the flow of exe-
cution. Data dependencies are typically represented as
directed edges between operations in the control flow
graph, with the direction of the edge indicating the flow
of data from one operation to another.

1. Directed Graph: A pair (S, E) that consists of a set of
nodes S and a set of edges (E ⊆ S × S) is referred to
as a directed graph. A path P connecting node n1
and n j is a non-empty sequence of nodes ⟨ n1, . . . ,
n j ⟩ ∈ S+ where (ni, ni+1 ∈ E ∀ i ∈ {1,. . . , j-1}.

2. Control flow graph (CFG): A CFG with defined(D)
and used(U) sets is a tuple (S, E, D, U) in which
(S, E) is a directed graph, S has two distinct nodes
which is start and stop, and defined, used: S →
℘ (V) are functions that return the node’s defined
and used variables, respectively.

3. Data Dependencies: Data dependencies refer to the
relationships between operations in a program
where the value of one operation is used as input
to another operation. These dependencies describe
the flow of data through the program and affect the
order in which the operations must be executed.
Knowing the data dependencies in a program is
important for analyzing and optimizing its perfor-
mance, as well as for parallelizing its execution
for improved efficiency on multi-core and multi-
processor systems.

4. Control Dependencies: In the context of a control
flow graph, control dependencies refer to the rela-
tionships between operations (nodes in the graph)
and the control flow statements (if-then-else, while
loop, etc.) that determine the order in which the
operations are executed. The control dependencies
specify which operations must be executed before a
particular control flow statement is executed, and
which operations are executed as a result of that
control flow statement. This information is used
to determine the order of execution of operations
in the graph and ensure the correct behavior of the
program.

Extending Semantic based Techniques for Policy-based Slicing of Database Program 48

1. START
2. float x = 0.05;
3. float y = 0.15;
4. Statement con = DriverManager.getConnection("jdbc sql: . . . ", "scot", "tig").createStatement();
5. con.executeQuery("UPDATE Emp SET sal = sal + y ∗ sal WHERE yrs_of _employment ⩾ 20 ");
6. ResultSet rs1=con.executeQuery("SELECT AVG(sal) FROM Emp WHERE yrs_of _employment ⩾ 20 ");
7. ResultSet rs1=con.executeQuery("SELECT AVG(sal) FROM Emp WHERE yrs_of _employment < 20 ");
8. con.executeQuery("UPDATE Emp SET sal = sal + x ∗ sal WHERE yrs_of _employment BETWEEN 3 AND 45 ");
9. ResultSet rs1=con.executeQuery("SELECT AVG(sal) FROM Emp WHERE yrs_of _employment BETWEEN 3 AND 45 ");
10. END

Figure. 3: DB Code “Prog”

5. Program Dependency Graph: A program depen-
dency graph (PDG) is a directed graph that rep-
resents the relationships between elements in a
program, such as variables, statements, and func-
tions [45]. It shows how the values of one element
depend on the values of other elements, and is
used to analyze and understand the behavior of a
program. Each node in a PDG represents a pro-
gram element, such as a variable or statement, and
the edges represent the relationships between ele-
ments. For example, an edge from one statement to
another might indicate that the first statement has
an impact on how the second statement is carried
out. PDGs can be used for a variety of purposes,
such as analyzing the impact of changes to a pro-
gram, identifying potential bugs, or optimizing the
performance of a program.

The construction of a PDG typically involves data
flow analysis, which tracks the flow of data through
the program to determine the relationships be-
tween elements. The PDG is updated as the pro-
gram is executed, and can be used to create pro-
gram slices, which are smaller parts of the program
that represent the minimum set of statements nec-
essary to produce a particular output.

Fig. 4 shows a simple program and its corresponding
PDG where control dependency is shown by solid lines,
whereas data dependence is represented by dashed
lines.

Figure. 4: A small program (left side) and its corre-
sponding PDG (right side)

However, in [12] the notion of Data Dependency Graph
(DDG) first proposed by the authors in the context of
database systems that contain query language. The
DDG is generated of this database code in place of the
conventional PDG and is equivalent to the former with

two additional dependencies:

Definition 1 (Program-Database (PD) dependence)
[43]. If the following three conditions are met, a
database statement D is PD dependent on a program
statement I for a variable x (denoted I x

−→ D): (i) I
determines x, (ii) x is used by D, and (iii) x is not
redefined by I and D.

Definition 2 (Database-Database(DD) dependence)
[43]. Consider D.INS, D.SEL, D.DEL and D.UPD
denotes database operations which are insert, select,
delete and update respectively by statement D. For an
attribute ’a’, a database statement D1 is reliant on state-
ment D2 in the same database (denoted D1 a

−→ D2) if
the following hold: (i) D1.SEL ∩(D2.INS ∪ D2.UPD ∪
D2.DEL) = ∅, and (ii) The impact of D2 cannot be un-
done by reversing the execution on the route p between
D2 and D1 (exclusive).
Observe the running example "Prog". Figure 5 demon-
strates the syntax-based Database Dependency Graph
(DDG) of "Prog". The dependencies between the
imperative and control statements are determined in
the same way as traditional PDG. To compute the PD-
dependency and DD- dependency we have to compute
the defined (D) and used (U) variable of the statements:

D(2)= {x} D(3)= {y} D(4)= {sal, yrs_of_employment}
D(5) = {sal} U(5) = {y, yrs_of_employment}
U(6) = {sal, yrs_of_employment}
U(7) = {sal, yrs_of_employment}
U(8) = {x, yrs_of_employment}
U(9) = {sal, yrs_of_employment}

Based on the above information we can compute the
PD- and DD- dependences. For Example: edges

4
yrs_of_employment
−−−−−−−−−−−−−−→ 5, 5 sal

−−→ 6 etc. represents the DD-
dependency. Similarly, edges 2 x

−→ 8, 3
y
−→ 5 represent

the PD-dependency. The syntax-based DDG is illus-
trated in Fig. 5 where the red edges represent the false
dependencies present in the program.

Limitations: In the code snippet “Prog” in running ex-
ample (Section IV), even though statement 5 and state-
ment 7 are syntactically reliant i.e dependent on one
another, however if we focus on value there is no depen-
dency since statement 7 does not use the database-part
declared in line 5. Similarly, we can observe the same
false dependency between defined attribute of state-

49 A.Kashyap, A.Jana

Figure. 5: Syntax-Based DDG of Program “Prog”

ment 5 and used attribute of statement 9. Since false
dependencies exists, a more precise semantic-based ap-
proach is required to identify and eliminate those.

B. Semantics Refinement: Condition-Action Rules

To address the issue of spurious dependency in the
syntax-based database dependency graph, we offer a
semantic-based analysis based on the Condition Ac-
tion rule-based method proposed by Elena and Jen-
nifer in [46]. The suggested Condition Action rule-
based method which is introduced in [46] is for expert
database systems and is expressed using relational al-
gebraic expressions. First, we recall from [47] the for-
mulation of the semantics of database query languages.

Formal Syntax. Table 1 depicts the syntactic sets and
the abstract syntax of database statements in Backus-
Naur form. The syntax of SQL-embedded database
programs from [44] is summarized here. The impera-
tive aspect of the language also includes operations like
assignment, iteration, skip, and conditional. The vari-
ables used in the language can be divided into two cat-
egories: application variables (Va) and database vari-
ables (Vd). The GROUP BY and ORDER BY clauses
in the SQL are represented by the functions g(⃗e) and
f(⃗e), respectively, where e⃗ is a sequence of arithmetic
expressions. The aggregate functions in the SELECT
query, namely AVG, MAX, MIN, SUM, and COUNT,
are represented by the symbol s. The ordered sequence
of aggregate functions is denoted by h⃗(x⃗) where x⃗ is a
sequence of arguments.
The regulations are written in the form Eϕ→ EA, where
EA denotes the action part and Eϕ denotes a condi-
tion of the statement. When it comes to database
codes, each database statement q can be expressed in
two parts: (i) action part EA (ii) condition part Eϕ. It
may be formalised as q = < EA, Eϕ >. EA includes
four database statements namely, SELECT, INSERT, UP-
DATE, DELETE which can be denoted by EAsel, EAins,
EAupd, EAdel. The condition in the WHERE clause falls
under Eϕ which is a first order logic formula. The algo-
rithm analyses condition and action and predicts how
one statement’s action might impact the condition of
the other statement.

Additionally, the attribute extension operator lets us add
a new attribute to a relational expression E. This method
is utilised for aggregate functions as well as modifica-
tion actions. ϵ is an unary operator which is applied to
a relational expression E producing a small result with
schema{E}∪ {x}. ϵ is expressed as ϵ[x=expr] where, expr
is an expression that is evaluated over each tuple t of E.
Let us consider a SELECT statement, "SELECT salary
FROM Emp WHERE salary≤ 10000;". The Eϕ and EAsel
part of the above statement is:

Eϕ = πsalary(σsalary≤10000 Emp) and EAsel = null

Secondly, an INSERT statement "INSERT INTO
Emp(EmpID, FName, LName, Dept) VALUES(’1001’,
’Rakesh’, ’Sarma’, ’Accounts’);" is being considered.
The Eϕ and EAins part of the above statement is:

Eϕ=null and EAins=<’1001’,’Rakesh’,’Sarma’,’Accounts’>

Thirdly, let us take an UPDATE statement, "UPDATE
Emp SET salary = salary + salary * bonus WHERE
salary ≥ 50000";

Eϕ = πsalary(σsalary≥50000 Emp) and

EAupd=ϵ[salary=salary+salary*bonus](σsalary≥50000 Emp)

Lastly, a DELETE statement "DELETE FROM Emp
WHERE age> 60;" is being considered. The Eϕ and
EAdel part of the above statement is:

Eϕ = πage(σage>60 Emp) and EAdel = πage(σage>60 Emp)

The π and σ used above are relational algebra operators
for attribute projection and selection.
Now, we use a Condition-Action rule-based approach
to express the semantics of the Running Example code
snippet, as shown below:

E5
ϕ = πsal(σyrs_o f _employment≥20 Employee)

EA
5
upd = ϵ[sal= sal+ y ∗ sal](σyrs_o f _employment≥20 Employee)

E6
ϕ = πsal(σyrs_o f _employment≥20 Employee) EA

6
sel= null

E7
ϕ = ϵsal(σyrs_o f _employment≤20 Employee) EA

7
sel = null

E8
ϕ = πsal(σyrs_o f _employment≥3∧yrs_o f _employment≤45 Employee)

EA
8
upd=ϵ[sal=sal+x∗sal](σyrs_o f _employment≥3∧yrs_o f _employment≤45

Employee)

E9
ϕ=πsal(σyrs_o f _employment≥3∧yrs_o f _employment≤45Employee)

EA
9
sel = null

After computing the condition and action part of the
database statements of the code snippet "Prog" we now
use that information to compute the dependencies be-

Extending Semantic based Techniques for Policy-based Slicing of Database Program 50

Syntactic Sets
n : Z (Integer)
k : S (String)
va : Va (Application Variables)
vd : Vd (Database Attributes)
e : E (Arithmetic Expressions)
d : D (Boolean Expressions)
A : A (Action)
τ : T (Terms)
a f : A f (Atomic Formulas)
ϕ : W (Pre-condition)
Q : Q (SQL statements)
I : I (Imperative statements)
c : C (Statements)

Abstract Syntax
e ::= n | k | va | vd | opu e | e1 opb e2, where opu ∈ {+,−} and opb ∈ {+,−, ∗, /,}
d ::= e1 opr e2 | ¬d | d1 ∨ d2 | d1 ∧ d2 | true | f alse, where opr ∈ {=,≥,≤, <, . . . }
g(⃗e) ::= GROUP BY(⃗e) | id
r ::= ALL | DISTINCT
s ::= AVG | SUM | MAX | MIN | COUNT
h(e) ::= s ◦ r(e) | DISTINCT(e) | id
h(∗) ::= COUNT(*)
h⃗(x⃗) ::= ⟨h1(x1), ..., hn(xn)⟩, where h⃗ = ⟨h1, ..., hn⟩ and x⃗ = ⟨x1, ..., xn⟩

f (⃗e) ::= ORDER BY ASC(⃗e) | ORDER BY DESC(⃗e) | id
q ::= ⟨EA, Eϕ⟩
A ::= SELECT(va, f (e⃗′), r(⃗h(x⃗)), ϕ, g(⃗e)) | UPDATE(v⃗d, e⃗) | INSERT(v⃗d, e⃗) | DELETE(v⃗d)
τ ::= n | k | va | vd | fn(τ1, τ2, ..., τn), where fn is an n-ary function.
a f ::= Rn(τ1, τ2, ..., τn) | τ1 = τ2, where Rn(τ1, τ2, ..., τn) ∈ {true, f alse}
ϕ ::= a f | ¬ϕ1 | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ∀xi ϕ | ∃xi ϕ
I ::= skip | v := e
c ::= Q | I | if b then c1 else c2 |while b do c

Table 1: Syntax and semantics of query languages

tween the statements. We will first find out the defined
and used part of each statement and finally use that
data to calculate the DD-dependency depending on se-
mantics.

1) Computing the Defined and Used Part:

We must determine the database components of the
statements that will be defined or used by the state-
ments of q in order to compute the dependence between
two database statements, q1 and q2. Hence, The seman-
tics of q are divided into three categories, ψ◦ = < qt, q f ,
qm >. In this case, qt stands for the true component, q f
for the false part, and qm for the modified section. Now,
let’s specify two functions Funcd and Funcu. Let Dq and
Uq indicate, respectively, the Defined and Used database
components of the database statement q:

Dq = Funcd (q, ψ◦) = < q, qt, qm >

Uq = Funcu (q, ψ◦) = < qt >

2) Computing Dependency:

Two statement, for example A1 and A2 are said to
be dependent on each other iff DA1

q ∩ UA2
q , ∅. We

will first generate the pairwise dependency of two
statements. It will have four possibilities to identify the
independency and the semantic dependency among
them. DA1

q can be expressed by two components,
DA1

q =< EA1
A , EA1

ϕ >, according to the condition-action

rule based method where, EA1
A represents the action

part and EA1
ϕ represents its condition part. Also, UA1

q

can be represented by, < QA1
ϕ >. Similarly, for DA2

q and

UA2
q can be represented as: DA2

q = < EA2
A , EA2

ϕ > and

UA2
q = < QA2

ϕ >.

The semantic independency and dependency are
shown below:

1. EA1
ϕ ∩ QA2

ϕ , ∅ ∧ EA1
A ∩ QA2

ϕ = ∅

2. EA1
ϕ ∩ QA2

ϕ = ∅ ∧ EA1
A ∩ QA2

ϕ , ∅

3. EA1
ϕ ∩ QA2

ϕ , ∅ ∧ EA1
A ∩ QA2

ϕ , ∅

4. EA1
ϕ ∩ QA2

ϕ = ∅ ∧ EA1
A ∩ QA2

ϕ = ∅

Fig. 6 shows a visual depiction of the aforementioned
four circumstances. Red color indicates QA2

ϕ , blue indi-

cates EA1
ϕ and green indicates EA1

A . From this figure, we
can see that semantic independency between statement
A1 and A2 is observed only in case of condition 4. The
remaining three cases shows the semantic dependency
between the statements.
Now, by employing Condition-Action rule-based strat-
egy, we will illustrate our running example to remove
our false dependencies [47] present in the code snippet.
We can see that EA

5
upd acts on a part of data which is not

used by E7
ϕ, as a result, it is a false dependency. Simi-

larly, there is a faulty relationship between 5 −→ 9. As
a result, the Condition-Action rule-based method elim-
inates one of the false dependency from our running
example which is shown in Fig. 7.

3) Limitations of Condition-Action rule based approach

Although, it is an efficient semantics based analysis, it
has some major drawbacks which needs to be consid-
ered. Let us consider our running example from sec-
tion IV. If three consecutive statements are present in
a program and there exist a false dependency between
them, it cannot be identified using the Condition-Action
rule based approach. In our example, there is a false
dependency between 5→9 as there is another update
statement in statement 8 which will affect the result of
statement 9. It is represented in the Fig. 8. Statement
5 is updating some amount of data, another amount of
data is being updated by 8 and then after that 9 is also
updating some amount of data. In this case 9 will only
consider the data which was last updated by statement
8. Statement 8 is overwriting statement 5 so statement 9
will depend only on the result of statement 8. Therefore
there is a false dependency between 5 and 9 which will
not be identified by Condition-Action rule based ap-
proach. Also, it has high computational cost of O(2n),
where n represents the number of variables in the pro-
gram and is unable to generate optimal solution.
Consequently, we require more accurate semantics-
based analysis which will be computationally cost effec-
tive and can completely identify and remove the false
dependencies present in the program.

51 A.Kashyap, A.Jana

Figure. 6: Representations of dependencies and independencies

Figure. 7: Refined DDG of Program “Prog” using
Condition-Action

C. Refinement Using Hoare Logic

Hoare logic is another formal method of refinement
technique which was proposed by British computer sci-
entist and logician Tony Hoare in 1969 [48]. The original
idea were based on the work of Robert W. Floyd.
Hoare logic’s primary goal is to offer a formal mecha-
nism for assessing program correctness. It is like a con-
tract between the implementation of a function and its
clients. The main feature of hoare logic is its Hoare Triple.
It can be represented by: {P} S {Q}, where P is the precon-
dition, Q is the postcondition, and S is the statement to be
executed. The precondition is a predicate that explains
the condition on which the function relies for proper
execution and must be met by the client. The postcon-
dition is a predicate that describes the condition that the
function creates after it has been executed successfully.
We take a broad view of a situation in which the SQL
instructions are included into another high-level host
language.
If the precondition is satisfied shortly before the func-
tion is executed and the postcondition is satisfied if the
function finishes, the implementation of a function is
partially correct with regard to its definition. Similar
to this, the implementation is 100% accurate if it is as-
sumed that the precondition is true before the function
executes, the function is bound to terminate, and the
postcondition is true at the time of termination. Total
correctness is thus the sum of partial correctness and its

termination.
It should be emphasised that a client can occasionally
call a function without completing its precondition, in
which case the function can act in any way and still
be valid. As a result, it is critical that the function be
error-tolerant, and the precondition must incorporate
the potential of erroneous input, while the postcondi-
tion should define what should happen in the event
of such mistakes. For example, one such method
could be throwing of exceptions to handle such errors.
The weakest precondition WP [48] of an iteration free
imperative program is computed as follows, given a
program statement ’stmnt’ and a postcondition φ:

{WP(skip, φ) = φ WP(v:= e, φ) = φ[e/v]}

{WP(stmnt1; stmnt2, φ) =WP(stmnt1, WP(stmnt2, φ))}

{WP(if d then stmnt1 else stmnt2 endif,φ) =

(d∧wp(stmnt1, φ))∨(¬d ∧WP(stmnt2, φ))}

To handle database programs, we define WP (Weakest Precon-
dition) [48] on database statements as shown below.

{WP(skip, φ) = φ WP(v:= e, φ) = φ[e/v]}

{WP(assumeφ1,φ2)=φ1 =⇒ φ2 WP(assertφ1,φ2)=φ1 ∧φ2}

{WP(<RS:= SEL(f(⃗e), r(⃗h(x⃗)),φ, g(⃗e)),ϕ>,φ)=(φ[F(a⃗)/RS]∧ ϕ)∨
(φ∧¬ ϕ)}

{WP(<UPD(⃗e),ϕ >,φ)=((φ∧¬ϕ)∧φ[⃗e/a⃗] ∧ ϕ))}

{WP(<a⃗:=INS(⃗e),false >,φ)=φ[⃗e/a⃗]∨{φ}}

{WP(<a⃗:=DEL(),ϕ>φ)=φ∧¬ϕ))

WP(stmnt1; stmnt2,φ)=WP(stmnt1, WP(stmnt2,φ))}

{WP(if d then stmnt endif, φ) = (d∧WP(stmnt, φ)) ∧ (¬d ∧ φ)}

{WP(if d then stmnt1 else stmnt2 endif, φ)= (d ∧ WP(stmnt1,
φ))∨(¬d ∧WP(stmnt2, φ))}

Extending Semantic based Techniques for Policy-based Slicing of Database Program 52

Figure. 8: Representation of overlapping part of the database after execution of the three subsequent statements
5, 8 and 9 of "Prog".

In order for a program to be accurate, it must start in a state
where P is true, execute S, and end in a state where Q is true.
This is what "hoare triple" means. Let us take an example,
consider the Hoare triple {x=10}x = x∗3{x>0}. It is evident
that the triple is accurate, because if x=10 and we multiply it
by 3 it will be x=30, which is more than 0, i.e, it is satisfying
the postcondition. Although true, this hoare triple’s postcon-
dition is not particularly exact. We can provide more stronger
postcondition which will be more informative and will pin
down the value of x to a certain range. For example, instead
of writing {x>0} , a more precise postcondition would be {x>20
&& x<50}. However, the strongest postcondition would be if
{x=30}. Formally, Q is the strongest postcondition of S with
regard to P if {P}S{Q} for any Q such that {P}S{Q}, Q =⇒ Q.
Similarly, for the above example, x=30 is not the only valid
precondition. It can also be x>0 or x> 5 etc. Although, declar-
ing a constant gives us the guaranteed postcondition, they
are not technically correct. They are more restrictive about
the values of x for which the function is guaranteed to be cor-
rect. We usually want to use the precondition that guarantees
correctness for a broader set of inputs. Therefore, technically
we need the weakest precondition, i.e, the most general pre-
condition to construct the precondition. Therefore, we can
write it as {x>0}x=x∗4{x>1}, which is metaphorically stronger
than declaring it to a constant. Formally, it can be written as P
=WP(S, Q) which indicates that P is the weakest precondition
for function S and postcondition Q.
Using hoare logic we can refine the data dependency as in
the following steps as mentioned. (i) Construction of the
Action Tree, (ii) Calculating Traces, (iii) Backtracking with
Pre-Conditions:, (iv) Product of observational-window and
traces, (v) Recognizing dependences [49].
To illustrate the above proposed approach, let us take a small
database code snippet (Fig. 9) and a database table (Table 2)
to discuss the different phases in details.

Construction of the Action Tree: If we consider a database
code snippet q, it can be represented abstractly as q = < EA,
Eϕ >, where EA represents the action component and Eϕ rep-
resents the condition component of the database statement.
The construction of the action tree is a stage that divides
the database statements into condition-action components us-
ing the condition-action portion of the database statement
(e.g., INSERT, DELETE, and UPDATE). This division of the
database information generates a tree-like structure, known
as the Action Tree. The edges in the tree depict the conditions
of the database statement, and the nodes represent the actions.
Let us illustrate the construction of Action Tree in details.

ID PRODUCT PRICE
3001 Vanilla Ice-Cream 130
3002 Sphagetti 90
3003 Ravioli 100
3004 Semolina 110
3005 Millet 150
3006 Cookies 120
3007 Wheat Flour 155
3008 Wafers Jumbo Pack 180
3009 Ground Coffee 100
3010 Doritos 105

Table 2: DB Table for Product

Example 3 Given a Program P which is depicted in Fig. 9. Let
us denote each statement as s1, s2, s3 and s4. Analyzing the
program we can see that the order of definition of PRICE will be
s1 −→ s2 −→ s3.
At the program point s1, the statement functions as a declaration
for all the attributes in the database. This declaration is referred to
as the action component and is represented as "s1: DB" by a child
node. Since there is no condition component present, it is simply
labeled as "s1: Tr" (Tr denotes True).
In statement s2, the condition part Eϕ= 100≤ PRICE≤ 150 divides
the database in two parts: one that satisfies the condition (say, Eϕ)
and one which do not satisfy the given condition (say, ¬ Eϕ). The
action PRICE′=PRICE+20 is applied on Eϕ, whereas for ¬ Eϕ re-

mains same. According to condition-action rule, both s1
Eϕ
−→ s2 and

s1
¬Eϕ
−−−→ s2 exists. Hence, we create two child nodes: one denotes

the action s2: PRICE′=PRICE+20 with edge labelled by s2: Eϕ i.e,
100≤PRICE≤150 and the other denotes s2: PRICE′=PRICE with
the edge labelled as s2: ¬Eϕ i.e, PRICE<100∧PRICE>150. Similar
approach is applied for the statement at s3. Regarding the statement

s2
¬Eϕ
−−−→ s3, the edge is labeled ¬Eϕ= PRICE<90∧PRICE>155,

which violates the condition-action rule and thus, there is no child
node assigned to the action PRICE′′=PRICE′. The Fig. 10 repre-
senting the final Action Tree for program P is depicted below.

Calculating Traces: A trace in an Action Tree is a sequence
of labels that starts at the root node and ends at a leaf node.
The traces of an Action Tree can be obtained by following the
path from the root node to its leaf nodes.
In formal terms, a trace is expressed as <(si: Eϕ, si: EA)>i≥1,
where Eϕ symbolizes the condition component and EA sym-
bolizes the action component of given DB statement.

53 A.Kashyap, A.Jana

1. Statement con = DriverManager.getConnection("jdbc sql: . . . ", "scot", "tig").createStatement();
2. con.executeQuery("UPDATE Product SET PRICE = PRICE + 20 WHERE PRICE BETWEEN 100 AND 150 ");
3. con.executeQuery("UPDATE Product SET PRICE = PRICE + 10 WHERE PRICE BETWEEN 90 AND 155 ");
4. ResultSet rs1=con.executeQuery("SELECT PRICE FROM Product WHERE PRICE BETWEEN 90 AND 160 ");

Figure. 9: Program P

Figure. 10: Action Tree

Example 4 Let us illustrate the given action tree from Fig. 10 in
traces.

µ1= (s1:Tr, s1:DB) (s2:100≤PRICE≤150, s2:PRICE′=PRICE+20)
(s3:90≤PRICE′155, s3:PRICE′′=PRICE′+10)

µ2= (s1:Tr, s1:DB) (s2:PRICE<100∨PRICE>150, s2:PRICE′=
PRICE) (s3:90≤PRICE′≤155,s3:PRICE′′=PRICE′+10)

µ3= (s1:Tr, s1:DB) (s2:PRICE<100∨PRICE>150, s2:PRICE′=
PRICE)(s3:PRICE′<∨ PRICE′ > 155, s3:PRICE′′= PRICE′)

Backtracking with Pre-Conditions: As previously dis-
cussed, Hoare logic is a deductive system. Our goal is to
determine the semantic-based dependencies between a used
attribute and all previous declaration statements. To achieve
this, we use the condition component of the statements as
an observational window for the used statement. By consid-
ering the observational window of the used statement, we
calculate the weakest pre-condition. The purpose of this is to
trace the flow of definitions and to assess if it influences the
observational window.

Example 5 Let’s consider the program P depicted in Fig.
9. For statement s4, the observational window is defined as
(90≤PRICE′′≤160) and can be represented as: w4= s4: 90≤
PRICE′′ ≤ 160. By using Hoare logic, we obtain,

{w1} s1: DB {w2} s2: PRICE′=PRICE+20 {w3} s3: PRICE′′=
PRICE′+10 {w4}

where, w3= s3: 80≤PRICE′ ≤150,
w2=s2: 60≤ PRICE ≤ 130,
w1=s1: 60≤ PRICE ≤ 130

The flow of sequence can also be illustrated pictorially as
shown in Fig. 11.
As we can see, the sequence of the assertions above follows
an observational trace which can be written as,
µ◦=w1w2w3w4= (s1:60≤ PRICE≤ 130) (s2: 60≤ PRICE≤130)

(s3:80 ≤ PRICE′≤150) (s4:90≤ PRICE′′≤160)
Formally, an observational trace can be defined as

<(s j : Eϕ)> j≥1,where Eϕ represents a set of well-formed
formulas.

Product of observational-window and traces: The product
of an action tree trace µ and an observational trace µ◦ involves
taking the cross product of the two sequences, resulting in a
new sequence of pairs. This can be expressed as,
µ × µ◦= < (si : E′ϕ, si : E′A) >i ≥1× < (s j : E′′ϕ) > j ≥1 =< (sx, : p, sx :
q) >x ≥1 where,

(sx : p, sx : q) =



if ∃ i, j : i = j and E′ϕ ∧ E′′ϕ , ∅

(si : E′ϕ, si : E′A) × (s j : E′′ϕ) = (si : Tr, si : E′A)

if ∃ i, j : i = j and E′ϕ ∧ E′′ϕ = ∅

(si : E′ϕ, si : E′A) × (s j : E′′ϕ) = (si : Fa, si : E′A)

(s j : E′′ϕ , s j : Obs) if ∄ i : j = i
(1)

Here, Tr denotes true value, Fa denotes false value and Obs
represents ′observe′.

Example 6 Let us take the example of Program P from Fig. 9. The
result of the cross product between the action-tree trace (µ) and the
observational trace (µ◦) of Program P in Figure can be obtained
using equation 1.

µ1 × µ◦ = (s1 : Tr, s1 : DB)(s2 : Tr, s2 : PRICE′ = PRICE + 20)
(s3 : Tr, s3 : PRICE′′ = PRICE′ + 10)(s4: 90 ≤ PRICE′′ ≤

160, s4 : Obs)
µ2 × µ◦ = (s1 : Tr, s1 : DB)(s2 : Tr, s2 : PRICE′′ = PRICE)

(s3 : Tr, s3 : PRICE′′ = PRICE′ + 10)(s4: 90 ≤ PRICE′′ ≤
160, s4 : Obs)
µ3 × µ◦ = (s1 : Tr, s1 : DB)(s2 : Tr, s2 : PRICE′ = PRICE)

(s3 : Tr, s3 : PRICE′′ = PRICE′)(s4:90 ≤ PRICE′′ ≤ 160,
s4 : Obs)

Recognizing dependences: The process of identifying de-
pendences involves converting traces into binary values of
either yes or no. Traces in which the state is altered will be
replaced with "Y", while traces that do not alter the state will
be marked as "N" that denotes Yes and No respectively.

Example 7 Applying the conversion of traces to Program P we
get the following result.

µm
1 = (s1 : Tr, s1 : Y)(s2 : Tr, s2 : Y)(s3 : Tr, s3 : Y)
(s4:90 ≤ PRICE′′ ≤ 160, s4 : Obs)

µm
2 = (s1 : Tr, s1 : Y)(s2 : Tr, s2 : N)(s3 : Tr, s3 : Y)
(s4 : 90 ≤ PRICE′′ ≤ 160, s4 : Obs)

µm
3 = (s1 : Tr, s1 : Y)(s2 : Tr, s2 : N)(s3 : Tr, s3 : N)
(s4 : 90 ≤ PRICE′′ ≤ 160, s4 : Obs)

Given a set of masked traces, we will now apply a filter to
filter out the actions which are irrelevant to our semantic de-
pendency computation. The filter on masked traces can be
denoted as:

FIL(µ)={(sk:u, sk:v)| u= false ∨ v= no}

Extending Semantic based Techniques for Policy-based Slicing of Database Program 54

Figure. 11: Backwards with pre-condition

Example 8 Let us apply the filter to our masked traces and find
the refined actions.

FIL(µm
1) = (s1 : Tr, s1 : Y)(s2 : Tr, s2 : Y)(s3 : Tr, s3 : Y)

(s4 : 90 ≤ PRICE” ≤ 160, s4 : Obs)

FIL(µm
2)= (s1 : Tr, s1 : Y)(s3 : Tr, s3 : Y)(s4 : 90 ≤ PRICE” ≤ 160,

s4 : Obs)

FIL(µm
3)= (s1 : Tr, s1 : Y)(s4 : 90 ≤ PRICE” ≤ 160, s4 : Obs)

The following function will identify the semantic-based de-
pendencies from the filtered traces, using a trace element e=(sk:
u, sk:v). The label of the trace element is obtained by the func-
tion La(e) = k.

Dp (µ) = Dp(<e1, e2, e3,...., en >) = La(en−1)→ La(en)

Example 9 We will apply the above function on our refined traces
which we have obtained from the Program P (Fig. 9), to extract the
semantic-based dependency present in the program:

Dp(FIL(µm
1))= s3 → s4,

Dp(FIL(µm
2))= s3 → s4,

Dp(FIL(µm
3))= s1 → s4

Dependency computation is an important step to omit the
false dependencies present in a given database to avoid errors
and its inconsistencies as we have discussed on the previous
sections.
Now, let us consider our code snippet "Prog" from Fig. 3.
We denote each statement as s1, s2, s3,..., s10. We will consider
computation from s4 statement since we need to identify
false dependencies in the database part of the program. For
dependency computation we will compare each statement
to its subsequent statements. For Eg., it needs to satisfy the
given condition.

{ skprem∩skpostn }
∨

{skprem∩skpostn+1 }
∨

. . .
∨

{skprem∩skpostn } = ϕ

The above condition suggests that for a given precondition
say skprem , if it does not satisfy its given postcondition say
skpostn and there is no absolute relation amongst the two
statements then it indicates a false dependency between the
two considered statement.

In our database code snippet “Prog”, if we take statement
s5 and find what kind of relation/dependency does exist be-
tween s5’s precondition and the postconditions of its subse-
quent statements. First we consider s5 with s6. If we perform
intersection between the precondition of s5 and postcondition
of s6 we find that the range of window remains the same and

there is a relation between the two, hence no false dependency.
Now, we consider s5 with s7. Here we can see that there is
no common window range between the two conditions even
though it is using the variable sal as defined in statement s5.
Since, there is no actual dependency among the two it can
be identified as a false dependency. In statement s9 we can
see that our original value for the variable sal is overwritten
by statement s8. Hence, the range of window considered in
s9 will be in reference to the updated variable sal done in s8.
Hence, there exists a false dependency between the two state-
ments since our original value defined would be overwritten
and will change the structure of the database table.
We can clearly see from the Fig. 12 that the multi-level false
dependency of three subsequent statements which condition-
action rule based approach failed to identify has also been
removed using the hoare logic approach. Therefore, we get
more precise result.

Figure. 12: Refined DDG of Program “Prog” using
Hoare logic

D. Slicing Computation

Now, we compute the slice of “Prog” using the refined DDG
of Hoare logic. Slicing performs in two directions (i) Forward
Slicing- extracting those parts of the program which will be af-
fected by the slicing criterion (ii) Backward Slicing- extracting
those parts of the program which are affected by the slicing
criterion. Let us consider a policy ψ as follows:

ψ = The average salary of employees should be more than 20% of
the minimum salary of the category

From ψ, we extract the slicing criteria S = < 9, sal >, where
sal is the database attribute and 9 is the last program point of
"Prog". The goal of the backward slicing is to only extract the
sentences that have an impact on the values of sal at various
program points.

55 A.Kashyap, A.Jana

We compute slicing of "Prog" w.r.t S using backward slicing
algorithm [11]. We consider refined database dependency
graph of "Prog" (Fig. 12) as an input and the algorithm
produces the sub-graph of the refined database dependency
graph. The sub-graph is depicted in Fig. 14 and the node of
the sub-graph represents the slicing of "Prog" w.r.t ψ which is
shown in Fig. 13.

VI. Experimental Results

Using the Satisfiability Modulo Theorem (SMT), we put the
Condition-Action rule-based method into practise [50]. We
specifically used Z3 tool, which is a high performance SMT
solver developed by Microsoft Research [51][52]. The experi-
ment is carried out on a machine equipped with i5 processor,
a clock speed of 1.60GHz, Windows 10 64-bit OS having 4GB
of RAM.
We evaluate experimental results on a set of benchmarks codes
(.jsp files) [50] using Z3 tool. The used benchmark programs
are usually database applications which are open source im-
plemented in jsp program. To compute results, we perform
various steps which are: (i) Database statements are chosen in
pairs based on the sequence in which they appear in the code.
(ii) These database statements has to be converted to Static
Single Assignment (SSA) (iii) Pairwise Verification Condition
(VC) generation from the SSA form by extraction of the con-
dition and action components from the provided statements,
and finally (iv) using the Z3 tool, dependency verification
based on VC satisfiability is performed.

Example 10 Let us consider the following pair of database
statements.

Q1: UPDATE events SET no_of_days=no_of_days+1 WHERE
no_of_presenters≥20
Q2: UPDATE events SET no_of_days=no_of_days-1 WHERE
no_of_presenters≤14

The aforementioned statements’ SSA equivalents are:

Q1: UPDATE events SET no_of_days2 = no_of_days1+1
WHERE no_of_presenters1≥20
Q2: UPDATE events SET no_of_days3=no_of_days1-1 WHERE
no_of_presenters1≤14

The VCs for the above statements are:

(no_of_days2==no_of_days1+1)∧(no_of_presenters1>=20)∧
(no_of_days3==no_of_days1-

1)∧(no_of_presenters1<=14)

The Z3 encoded code can be written as:
1. (declare-const no_of_days1 Int)
2. (declare-const no_of_days2 Int)
3. (declare-const no_of_days3 Int)
4. (declare-const no_of_presenters1 Int)
5. (push)
6. (assert(=(+ no_of_days1 1)no_of_days2))
7. (assert(>=(+ no_of_presenters1 0)20))
8. (assert(=(- no_of_days1 1)no_of_days3))
9. (assert(<=(+ no_of_presenters1 0)14))
10. (check-sat)

Z3 indicates whether these two statements are dependent
or independent of each other. The result is depicted in Ta-
ble 3. Observe that, we obtain precise dependencies using

our proposed approach. Note that, NCLOC represents Non-
comment lines of code and Attr represents the attributes. The
corresponding graphical result is represented in Fig. 15.

VII. Discussion

Program slicing pulls a subset of statements from an original
source code that are relevant to a specific behaviour. This en-
ables programmers to solve numerous software-engineering
issues like debugging, maintenance, testing, etc. In the lit-
erature, we observe that syntactic-based computation of slic-
ing may generate imprecise results as it may contain false
dependencies. The reason behind this is that syntax-based
computation focuses on the variables rather than the values.
Therefore, as the syntactic presence of variables is inadequate
to represent importance, the syntax-based method may fail to
calculate a precise list of dependents. For example, consider
the statement “a = y + 2 × z % 2” where a is syntactically
reliant on z. However, there is no semantic reliance of z on a.
On the other hand, in the limitation of the syntax-based ap-
proach (Section V-A) the syntax-based dependency between
two SQL statements generates false dependency because we
focus on attributes instead of values. Therefore, we enhance
the syntax-based database dependency graph into a more re-
fined semantics-based database dependency graph.
Although, in the case of the Condition-Action rules-based ap-
proach we achieved a more precise slicing result as compared
to the syntax-based approach. Moreover, it fails to compute
optimal results because it is not a flow-sensitive approach.
Therefore, we consider the semantic approach Hoare Logic
where we removed more false alarms and obtained more pre-
cise results compared to the condition action rule-based ap-
proach. In this case, we follow the following steps for the
analysis.
• Constructing an action tree representation of the pro-

gram’s actions which helps in visualizing the program’s
flow of control.

• Computing the traces which are the sequences of pro-
gram statements that are executed during the program’s
execution.

• Performing backtracking with Pre-Conditions where the
precondition is applied backward through the action tree
to determine the values of database attributes before the
execution of the code.

• Computing the product of traces and the observational
window, which is the time window in which the depen-
dencies are being analyzed.

• Finally, identifying the dependencies between the pro-
gram’s variables by analyzing the product of the traces
and the observational window.

This way this semantic-based approach preserves the data
flow and captures more false dependencies which were not
removed using the Condition-Action rules-based approach.
Observe that, in this case, we consider the triplet of three state-
ments for the dependency analysis (instead of the pair-wise)
that make this approach flow-sensitive. These two semantics-
based approaches suffer from high computational complexity
(i.e. exponential), however, we obtain more precise slicing
results in the case of Hoare Logic as compared to Condition-
Action rules-based approach.

VIII. Conclusion

Program slicing is the most prominent tool for performing
many software engineering activities (like code understand-

Extending Semantic based Techniques for Policy-based Slicing of Database Program 56

1. START
2. float x = 0.05;
3. float y = 0.15;
4. Statement con = DriverManager.getConnection("jdbc sql: . . . ", "scot", "tig").createStatement();
5. con.executeQuery("UPDATE Emp SET sal = sal + y ∗ sal WHERE yrs of employment ⩾ 20 ");
8. con.executeQuery("UPDATE Emp SET sal = sal + x ∗ sal WHERE yrs of employment BETWEEN 3 AND 45 ");
9. ResultSet rs1=con.executeQuery("SELECT AVG(sal) FROM Emp WHERE yrs_of _employment BETWEEN 3 AND 45 ");

Figure. 13: Sliced program “Prog”

Applications (File Names) NCLOC SQL Stmnts Attributes Syntax based Condition action
Events(EventNew.jsp) 277 6 5 6 4

Ledger(LedgerRecord.jsp) 365 7 5 14 10
EmplDir(DepsRecord.jsp) 233 5 4 4 3
EmplDir(EmpsRecord.jsp) 367 6 4 6 4

Bookstore(EditorialsRecord.jsp) 240 4 3 5 2
Portal(EditOfficer.jsp) 340 8 4 10 9

Bookstore(BookMaint.jsp) 406 6 5 7 3
Bugtrack(ProjectMaint.jsp) 343 7 4 10 8

Bugtrack(EmployeeMaint.jsp) 368 6 4 12 11

Table 3: Results of DD-Dependency using the semantics rule-based method.

Figure. 14: Sub-DDG of program “Prog”

Figure. 15: Comparative analysis among the syntax-
based and the condition-based approach.

ing, debugging, maintenance, testing, etc.) of a large and com-
plex information system. In this paper, we proposed a novel
program-slicing framework for data-intensive programs in
information system scenarios where it considers the external
database states as well. We design the framework using a
data dependency graph and refined the dependency graph
(by removing false dependencies) using semantics-based ap-
proaches Condition-Action rules and Hoare Logic. Then we
compute the slicing w.r.t the policy on this refined dependency
graph that leads to precise slicing result. Finally, we evaluate
the experimental results on benchmark codes. This frame-
work serves as a powerful tool to solve the above-mentioned
software-engineering problems relating to query languages

and underlying databases. However, the used semantics-
based approaches suffer from high computational costs (ex-
ponential). Therefore, further investigation and implementa-
tion of other suitable semantics-based techniques will be our
future aim.

References

[1] F. Nielson, H. R. Nielson, and C. Hankin, Principles of
program analysis. Springer, 2015.

[2] B. Cherry, P. Benats, M. Gobert, L. Meurice, C. Nagy,
and A. Cleve, “Static analysis of database accesses in
mongodb applications,” in 2022 IEEE International Con-
ference on Software Analysis, Evolution and Reengineering
(SANER). IEEE, 2022, pp. 930–934.

[3] W. Landi, “Undecidability of static analysis,” ACM Let-
ters on Programming Languages and Systems (LOPLAS),
vol. 1, no. 4, pp. 323–337, 1992.

[4] F. Tip, “A survey of program slicing techniques,” Ams-
terdam, The Netherlands, Tech. Rep., 1994.

[5] C. Hammer, “Experiences with pdg-based ifc,” in En-
gineering Secure Software and Systems: Second Interna-
tional Symposium, ESSoS 2010, Pisa, Italy. Proceedings 2.
Springer, 2010, pp. 44–60.

[6] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The pro-
gram dependence graph and its use in optimization,”
ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 9, no. 3, pp. 319–349, 1987.

[7] A. Podgurski and L. A. Clarke, “A formal model of pro-
gram dependences and its implications for software test-
ing, debugging, and maintenance,” IEEE Transactions on
software Engineering, vol. 16, no. 9, pp. 965–979, 1990.

[8] L. Jiang, Scalable detection of similar code: Techniques and
applications. University of California, Davis, 2009.

[9] J. Krinke, “Information flow control and taint analysis
with dependence graphs,” in 3rd International Workshop
on Code Based Security Assessments (CoBaSSA), 2007, pp.
6–9.

57 A.Kashyap, A.Jana

[10] A. Jana, R. Halder, N. Chaki, and A. Cortesi, “Policy-
based slicing of hibernate query language,” in IFIP Inter-
national Conference on Computer Information Systems and
Industrial Management. Springer, 2015, pp. 267–281.

[11] M. Weiser, “Program slicing,” IEEE Transactions on soft-
ware engineering, vol. SE-10, no. 4, pp. 352–357, 1984.

[12] D. Willmor, S. M. Embury, and J. Shao, “Program slicing
in the presence of database state,” in 20th IEEE Interna-
tional Conference on Software Maintenance, 2004. Proceed-
ings. IEEE, 2004, pp. 448–452.

[13] N. AlAbwaini, A. Aldaaje, T. Jaber, M. Abdallah, and
A. Tamimi, “Using program slicing to detect the dead
code,” in 2018 8th International Conference on Computer
Science and Information Technology (CSIT). IEEE, 2018,
pp. 230–233.

[14] A. Cleve, “Program analysis and transformation for
data-intensive system evolution,” in Proc. of the 26th Int.
Conf. on Software Maintenance. IEEE CS, 2010, pp. 1–6.

[15] Y. Sivagurunathan, M. Harman, and S. Danicic, “Slicing,
i/o and the implicit state,” in Proc. of the 3rd Int. Workshop
on Automatic Debugging, 1997, pp. 59–68.

[16] H. B. K. Tan and T. W. Ling, “Correct program slicing of
database operations,” IEEE Software, vol. 15, pp. 105–112,
1998.

[17] H. W. Alomari and M. Stephan, “Clone detection through
srcclone: A program slicing based approach,” Journal of
Systems and Software, vol. 184, p. 111115, 2022.

[18] I. Mastroeni and D. Zanardini, “Data dependencies and
program slicing: from syntax to abstract semantics,” in
Proc. of the ACM SIGPLAN symposium on Partial evaluation
and semantics-based program manipulation. ACM Press,
2008, pp. 125–134.

[19] E. Soremekun, L. Kirschner, M. Böhme, and A. Zeller,
“Locating faults with program slicing: an empirical anal-
ysis,” Empirical Software Engineering, vol. 26, no. 3, pp.
1–45, 2021.

[20] A. Kashyap and A. Jana, “Policy-based code slicing
of database application using semantic rule-based ap-
proach,” in Innovations in Bio-Inspired Computing and Ap-
plications: Proceedings of the 13th International Conference
on Innovations in Bio-Inspired Computing and Applications
(IBICA). Springer, 2023, pp. 392–403.

[21] B. Xu, J. Qian, X. Zhang, Z. Wu, and L. Chen, “A brief
survey of program slicing,” ACM SIGSOFT Software En-
gineering Notes, vol. 30, no. 2, pp. 1–36, 2005.

[22] H. Zhang, H. B. K. Tan, L. Zhang, X. Lin, X. Wang,
C. Zhang, and H. Mei, “Checking enforcement of in-
tegrity constraints in database applications based on
code patterns,” Journal of Systems and Software, vol. 84,
no. 12, pp. 2253–2264, 2011.

[23] A. Formica and M. Missikoff, “Integrity constraints rep-
resentation in object-oriented databases,” in Information
and Knowledge Management Expanding the Definition of
“Database” First International Conference, CIKM’92 Balti-
more, Maryland, USA. Springer, 1993, pp. 69–85.

[24] K. Ahmed, M. Lis, and J. Rubin, “Mandoline: Dynamic
slicing of android applications with trace-based alias
analysis,” in 2021 14th IEEE Conference on Software Test-
ing, Verification and Validation (ICST). IEEE, 2021, pp.
105–115.

[25] N. Sasirekha, A. E. Robert, and D. M. Hemalatha, “Pro-
gram slicing techniques and its applications,” arXiv
preprint arXiv:1108.1352, 2011.

[26] W. Muylaert and C. De Roover, “Untangling composite
commits using program slicing,” in 2018 IEEE 18th In-
ternational Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, 2018, pp. 193–202.

[27] K. J. Ottenstein and L. M. Ottenstein, “The program
dependence graph in a software development environ-
ment,” ACM Sigplan Notices, vol. 19, no. 5, pp. 177–184,
1984.

[28] J. Arora, “Static program slicing-an efficient approach
for prioritization of test cases for regression testing,” Int.
Journal of Computer Applications, vol. 135, no. 13, pp. 18–
23, 2016.

[29] D. Ghosh and J. Singh, “A systematic review on program
debugging techniques,” Smart Computing Paradigms:
New Progresses and Challenges: Proceedings of ICACNI
2018, Volume 2, pp. 193–199, 2019.

[30] M. Chalupa and J. Strejček, “Evaluation of program slic-
ing in software verification,” in International Conference
on Integrated Formal Methods. Springer, 2019, pp. 101–
119.

[31] J.-F. Bergeretti and B. A. Carré, “Information-flow and
data-flow analysis of while-programs,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS),
vol. 7, no. 1, pp. 37–61, 1985.

[32] D. E. Denning and P. J. Denning, “Certification of pro-
grams for secure information flow,” Communications of
the ACM, vol. 20, no. 7, pp. 504–513, 1977.

[33] S. Danicic, M. Harman, and Y. Sivagurunathan, “A par-
allel algorithm for static program slicing,” Information
Processing Letters, vol. 56, no. 6, pp. 307–313, 1995.

[34] I. S. Chung, W. K. Lee, G. S. Yoon, and Y. R. Kwon,
“Program slicing based on specification,” in Proceedings
of the 2001 ACM symposium on Applied computing, 2001,
pp. 605–609.

[35] J. Cheney, “Program slicing and data provenance.” IEEE
Data Eng. Bull., vol. 30, no. 4, pp. 22–28, 2007.

[36] L. Bent, D. Atkinson, and W. Griswold, “A qualitative
study of two whole-program slicers for c,” Technical Re-
port, 2000.

[37] D. Binkley and M. Harman, “A large-scale empirical
study of forward and backward static slice size and con-
text sensitivity,” in International Conference on Software
Maintenance. ICSM 2003. Proceedings. IEEE, 2003, pp.
44–53.

[38] D. W. Binkley and M. Harman, “A survey of empirical
results on program slicing.” Adv. Comput., vol. 62, no.
105178, pp. 105–178, 2004.

[39] T. Hoffner, Evaluation and comparison of program slicing
tools. Citeseer, 1995.

[40] S. Kusumoto, A. Nishimatsu, K. Nishie, and K. Inoue,
“Experimental evaluation of program slicing for fault
localization,” Empirical Software Engineering, vol. 7, no. 1,
pp. 49–76, 2002.

[41] J. R. Lyle, “Evaluating variations on program slicing for
debugging.” Dissertation Abstracts International Part B:
Science and Engineering[DISS. ABST. INT. PT. B- SCI. &
ENG.],, vol. 46, no. 5, 1985.

Extending Semantic based Techniques for Policy-based Slicing of Database Program 58

[42] Y.-Z. Zhang, “Sympas: symbolic program slicing,” Jour-
nal of Computer Science and Technology, vol. 36, pp. 397–
418, 2021.

[43] A. Jana, “Data-centric refinement of database-database
dependency analysis of database program.” in ICSOFT,
2020, pp. 234–241.

[44] R. Halder, M. Zanioli, and A. Cortesi, “Information leak-
age analysis of database query languages,” in Proceedings
of the 29th Annual ACM Symposium on Applied Computing,
2014, pp. 813–820.

[45] C. Hammer and G. Snelting, “Flow-sensitive, context-
sensitive, and object-sensitive information flow control
based on program dependence graphs,” International
Journal of Information Security, vol. 8, no. 6, pp. 399–422,
2009.

[46] E. Baralis and J. Widom, “An algebraic approach to rule
analysis in expert database systems,” Stanford, Tech.
Rep., 1994.

[47] A. Jana, R. Halder, K. V. Abhishekh, S. D. Ganni, and
A. Cortesi, “Extending abstract interpretation to depen-
dency analysis of database applications,” IEEE Transac-
tions on Software Engineering, vol. 46, no. 5, pp. 463–494,
2018.

[48] C. A. R. Hoare, “An axiomatic basis for computer pro-
gramming,” Communications of the ACM, vol. 12, no. 10,
pp. 576–580, 1969.

[49] M. I. Alam and R. Halder, “Data-centric refinement of in-
formation flow analysis of database applications,” in In-
ternational Symposium on Security in Computing and Com-
munication. Springer, 2015, pp. 506–518.

[50] “Gotocode,” http://www.gotocode.com, [Online; ac-
cessed 20-Dec-2020], (now archived at: https://github.
com/angshumanjana/GotoCode).

[51] E. Denney and B. Fischer, “Explaining verification con-
ditions,” in Int. Conference on Algebraic Methodology and
Software Technology. Springer, 2008, pp. 145–159.

[52] M. I. Alam, R. Halder, and J. S. Pinto, “A deductive
reasoning approach for database applications using ver-
ification conditions,” Journal of Systems and Software, vol.
175, p. 110903, 2021.

Author Biographies

Anwesha Kashyap She received an M.Tech degree from the
Indian Institute of Information Technology Guwahati, India,
in 2021 and a B.Tech degree from Dibrugarh University Insti-
tute of Engineering and Technology, Dibrugarh, India, in 2019,
both in the discipline of Computer Science and Engineering.
She is currently a PhD Scholar in the Department of Computer
Science and Engineering at the Indian Institute of Information
Technology, Guwahati, India. Her current research interests
include formal methods, program analysis and verification,
information security.

Angshuman Jana He received a doctoral degree from the In-
dian Institute of Technology Patna, India, in 2019. He received
a B.Tech degree from MAKAUT, India, in 2011 and an MTech
degree from the National Institute of Technology Durgapur,
India, in 2013, both in the discipline of computer science and
engineering. He is currently working as an Assistant Profes-
sor in the Department of Computer Science and Engineering
at the Indian Institute of Information Technology, Guwahati,

India. His areas of research interest include program analy-
sis and verification, formal methods, algorithm development,
database languages, data security. He has several publications
in reputed journals and conferences on program analysis and
verification and information flow security analysis.

http://www.gotocode. com
https://github.com/angshumanjana/GotoCode
https://github.com/angshumanjana/GotoCode

	Introduction
	Preliminaries
	Slicing
	Integrity Constraints

	Related Works
	Running Example
	Proposed Framework
	Evolutions of Dependency Graph
	Semantics Refinement: Condition-Action Rules
	Formal Syntax.
	Computing the Defined and Used Part:
	Computing Dependency:
	Limitations of Condition-Action rule based approach

	Refinement Using Hoare Logic
	Slicing Computation

	Experimental Results
	Discussion
	Conclusion

