
International Journal of Computer Information Systems and Industrial Management Applications.  

ISSN 2150-7988 Volume 12 (2020) pp. 231-238 

© MIR Labs, www.mirlabs.net/ijcisim/index.html                                                                                                                 

 

 

MIR Labs, USA 

 

Received: 15 April, 2020; Accepted: 21 May, 2020; Published: 20 June, 2020 

Reinforcement Learning Environment for Job Shop 

Scheduling Problems 
   

Bruno Cunha1, Ana Madureira2, and Benjamim Fonseca3 
 

1,2 Interdisciplinary Studies Research Center, Institute of Engineering - Polytechnic of Porto, 

Porto, Portugal 

bmaca@isep.ipp.pt 

amd@isep.ipp.pt 

 
3 INESC TEC and University of Trás-os-Montes and Alto Douro (UTAD), 

Vila Real, Portugal 

benjaf@utad.pt 

 

 

 

Abstract: The industrial growth of the last decades created a 

need for intelligent and autonomous systems that can propose 

solutions to scheduling problems efficiently. The job shop 

scheduling problem (JSSP) is the most common formulation of 

these real-world scheduling problems and can be found in 

complex fields, such as transportation or industrial assemblies, 

where the ability to quickly adapt to unforeseen events is critical. 

Using the Markov decision process mathematical framework, 

this paper details a formulation of the JSSP as a reinforcement 

learning (RL) problem. The formulation is part of a proposal of a 

novel environment where RL agents can interact with JSSPs that 

is detailed on this paper, including a comprehensive explanation 

of the design process, the decisions that were made and the key 

lessons learnt. Considering the need for better scheduling 

approaches on modern manufacturing environments, the 

limitations that current techniques have and the major 

breakthroughs that are being made on the field of machine 

learning, the environment proposed on this paper intends to be a 

major contribution to the JSSP landscape, enabling academics 

from different areas to focus on the development of new 

algorithms and effortlessly test them on academic and real-world 

benchmarks.  

 
Keywords: Reinforcement Learning, Job Shop Scheduling, 

Simulation, Optimization, Machine Learning.  

 

I. Introduction 

The industrial growth of the last decades stimulated the 

necessity for intelligent systems to efficiently support 

manufacturing environments, since they must have the ability 

to rapidly adjust to unforeseen events. The scheduling 

procedure of modern, real-world manufacturing environments 

still has many difficulties in dealing with unforeseen events, and 

the human decisions that are made do not convey into 

optimized plans. Hence, intelligent and autonomous systems 

are required so that automatic solutions to scheduling 

problems can be found quickly and as optimized as possible. 

Even a small reduction of the time required to calculate an 

improved schedule can have a significant impact in the 

performance of an industrial business.  

Scheduling has always been one of the most complex and 

impacting problems that the scientific community has 

researched, with scientists from artificial intelligence, 

operational research and scheduling theory [1] combining to 

propose several methods that attempt to solve scheduling 

problems. JSS is the most used formulation of the scheduling 

problem and is commonly applied in fields such as 

transportation (e.g. flight scheduling, staff allocation) or 

industrial assemblies (e.g. task distribution, resource 

assignment). A Job Shop is a setting where certain resources 

exist and must execute specific operations. Solutions to a JSSP 

must define where each operation will be executed and at 

which time interval that will happen. This is a classical 

optimization problem, where the difficulty is in finding the 

schedule that best takes advantages of the resource’s usage.  

The theory that humans learn by interacting with the 

environment is, probably, the most natural one and the easier to 

accept when we consider the nature of learning [2]. This is the 

key concept behind RL: perform an action, understand its 

effect, and learn something from it. This cause and effect 

relation is sustained by the scientific investigation of the human 

behavior conducted by psychologists [3].  

The last decade has seen a huge expansion of the machine 

learning field. The computational power, which was previously 

a bottleneck for machine learning researchers, is now so widely 

accessible and incredible powerful that breakthroughs are 

being made constantly. RL, a subfield of machine learning, has 

benefited greatly not only from these increases of computation 

power, but also from the recent innovations on how to train 

agents to solve a specific problem. Taking that into 

consideration, the main contributions of this paper are the 

formulation of JSSPs as a RL problem and a proposal of an 

original RL environment that shall allow the application of the 

latest RL techniques on JSSPs. Considering the available 

options [4], RL emerges as the clear choice to solve many of 



Cunha et al. 232 

the limitations of the current methods that are used to solve 

JSSPs.  

To use RL on JSSPs two key components must be 

developed: an intelligent agent that makes the scheduling 

decisions and an environment where that agent learns how to 

act. This paper focuses on the environment component. 

Although one is not very useful without the other, the correct 

implementation and execution of an environment is crucial: an 

inferior agent could still be capable of achieving a solution, but 

a mediocre environment might make it so that all solutions are 

invalid (e.g. if the rules are not validated correctly). Also, there 

is only need for one environment; after its development, several 

agents with specific learning algorithms can then be made to 

achieve the best possible results. 

Considering the need for improved scheduling procedures 

on modern manufacturing settings, the limitations that current 

techniques have and the major breakthroughs that are being 

made on the field of machine learning, the environment 

proposed on this paper aspires to be a major contribution to the 

JSSP landscape. 

The remaining sections are organized as follows: Section II 

starts by presenting an overview of the key concepts of the 

related work, fundamental to the proposal that this paper puts 

forward; Section III proposes a formulation of the JSSP as a 

RL problem; Section IV contains the details of the developed 

JSS environment for RL agents; and, at last, section IV 

contains the final conclusions and puts forwards the planned 

future works. 

II. Literature Review 

This section contains a summary on important topics that are 

related to the work proposed in this paper.  

 

A. Job Shop Scheduling 

The Job Shop problem is a scheduling problem that consists on 

the allocation of n manufacturing orders (known as jobs), J1, J2, 

J3, … Jn, in m machines, M1, M2, M3, … Mn, which are 

physically available in an industrial environment, such as a 

factory or a workshop (hence the job shop name). Each 

manufacturing order is characterized by a specific number of 

operations. Each of these operations is represented by oij, 

where i represents the order that the operation belongs to and j 

represents the precedence of the operation (e.g. o23 symbolizes 

the third operation of the second order).  

 Hence, a Job Shop problem P is defined by the collection of 

machines, orders and operations, which establishes P as the 

(M,J,O) set. 

Each operation also as an associated processing time, pij, 

that is known, which represents the number of time units that is 

necessary to completely process operation oij. 

On a job shop environment there are some basic restrictions 

that must be respected. These are: 

 All operations of a job can only be executed when the 

previous operation is completed, except in the case of the 

first one. 

 

 The operations of a given job cannot take precedence over 

operations of another job, i.e. there is only precedence 

between operations of the same job. 

 An operation that has already started (i.e. is being 

processed) cannot be interrupted. 

 A machine can only execute one job at a time. 

 A job can only be executed by one machine simultaneously, 

i.e. machine changes can only be made between operations. 

Even that these restrictions may seem like a simplification of 

the problem that is faced by several real-world industries this 

approach is still very useful and advantageous, given that it 

allows us to obtain very valuable information, e.g. the best 

order of execution of the available jobs [5]. 

Calculating a scheduling plan is, after all, a relatively simple 

task. Considering that we have N jobs that must be processed 

on M machines at specific times, the complexity in JSSPs is the 

calculation of the starting time of each operation on its 

respective machines. However, a scheduling plan, by itself, is 

of little use. What is required, naturally, is an optimized 

dispatching plan that presents the optimum solution. 

Unfortunately, there is no viable way to calculate an optimized 

plan given the complexity of this problem. 

The JSSP is considered to be of very hard resolution, and is 

classified as NP-hard [6]. Actually, of all the NP-Hard 

problems, JSSP are one of the hardest considering how 

complicated they are to solve [7]. 

From a large set of possible plans, it is necessary to choose 

the one that offers the best performance (according to the 

metric chosen). The possible combinations are quite high: 

considering n orders on m machines, the number of possible 

plans will be n!m. A small problem of 5 machines with 5 orders 

originates 24883200000 possible combinations; and a (still 

relatively small) problem of 10 machines and 10 orders creates 

a troublesome combination amount: 10!10 = 395965. A great 

part of these solutions would be invalid (due to violations of 

the basic restrictions) but, nevertheless, it is unfeasible to 

validate such a high number of solutions.  

Considering its complexity, there are no algorithms to obtain 

optimal solutions to large JSSP in a timely manner. It is 

therefore necessary to use approximate approaches to solve 

this problem, allowing to find solutions that are not optimal, 

but are good enough to put into production. 

When the optimization of something is mentioned this 

usually refers to the choice of an option (from a diverse range) 

that will minimize or maximize a certain objective function. 

The most common objective when solving a JSSP is to create a 

solution that minimizes the makespan [4] – the time at which 

the last operation is concluded. Even small improvements to 

the makespan of a plan could have a great impact on the costs 

and efficiency of a manufacturing system [8].  

JSSPs have always been a focus of the scientific community, 

especially in the disciplines of artificial intelligence and 

operational research [9]. The first publication that analyzed the 

performance of algorithms solving the JSSP was made by R. 

Graham, in 1969 [10]; But even today it is still a very active 

field, since the complexity of the problem keeps attracting 

researchers to it.  

Considering a recently published literature review, the 

general consensus methods to solve a JSSP, nowadays, is to 

use a metaheuristic [4]. The advantages are the speed at which 

it can achieve a good solution and the low computational effort. 
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However, there is still much room for improvements [11]. The 

solutions obtained by metaheuristics are, mostly, just good 

enough to be used but far from the optimal ones; they tend to 

not generalize well to instances of other problems (it might be 

successful on a specific JSSP instance but fail completely in 

another one); and a significant effort is required to develop an 

effective metaheuristic solver [4], [12]. 

 

B. Reinforcement Learning 

Machine learning can be divided in three fields [13]: supervised 

learning, unsupervised learning and RL. Supervised learning 

problems operate with a labelled dataset, i.e. we know 

precisely how to classify each example in the data. 

Unsupervised learning also uses a traditional dataset, but it is 

unlabeled, i.e. we do not know the correct classification of 

each data point and have no information on the relations 

between examples. RL is remarkably different from its 

counterparts given that it uses no pre-existing data. 

Essentially, RL can be defined by the process of an agent 

learning the best actions based on feedback provided by the 

environment [4]. The feedback contains a reward for the agent, 

which interprets it to draw a conclusion of the effects of the 

chosen action. This cause and effect (usually labelled as action 

and reward) relation is inspired in the scientific research of the 

human behavior conducted in psychology, going back as far as 

the beginning of the twentieth century [14], [15].  

Any problem of reinforcement learning has two main 

components: the agent and the environment. The agent, which 

needs to have a well-defined goal, is the entity that decides the 

actions to be taken and that can ascertain the state of the 

environment, even with uncertainties. The environment is 

where the agent operates and is related to the problem to be 

solved (e.g. in a chess game, the environment will be the board). 

However, besides the agent and the environment there are four 

critical components to any reinforcement learning system: the 

reward, the policy, the value function of each state and the 

environment model [4]. 

The policy is what defines the behavior of the agent. The 

policy maps the states of the environment to the actions that 

the agent must have in those states. The manner in which it is 

defined can be simple (a table with the mappings) or quite 

complex (intelligent search methods), with options being 

stochastic and having an associated probability [16]. Thus, the 

policy is a core component of a reinforcement learning system, 

as it is sufficient by itself to establish what behavior the agent 

will have. 

The reward is how the agent's goal is defined. After each 

agent action, the environment returns the reward. The goal of 

an agent is to maximize the total reward received throughout 

its interaction with the environment, regardless of the type of 

problem. Thus, and drawing a parallel with Thorndike's effect 

law [14], the reward has a major effect on the iterative 

construction of the agent policy and establishes what actions 

the agent should take: if an action chosen by the current policy 

receives a low reward, the policy should be updated to choose 

another available action when the agent is in a similar situation 

again. 

If the reward is related to immediate feedback from the 

environment, the value function is what allows the agent to 

take a long-term view. The value of a state is the total reward 

that an agent can get from that state, i.e. the value indicates 

how positive a state is considering future states and the reward 

they may give. Without rewards there could be no state value, 

since the sole purpose of the value is to estimate how a greater 

total reward can be obtained. However, the value of a state is 

more important when the agent has to consider all available 

actions. The agent should opt for actions that lead to states 

with the highest value and not the highest reward, because then 

they will accumulate a higher total reward in the long run. As 

would be expected, it is much more difficult to determine a 

correct value function than a reward. While the rewards are 

given directly by the environment, the value should be 

estimated continuously through the agent's interactions with 

the environment. This component is, in the author's opinion 

(and according to one of the fathers of modern reinforcement 

learning, Richard Sutton [17]) the most important of any 

system implementing algorithms of this problem category. 

The environment model is the component that seeks to 

replicate the behavior of the environment, so that inferences 

can be made and predict how it will react to an action. Given a 

state and an action, the model should return the reward 

associated to that action and calculate what the next state of 

the environment will be. It is the model, through inferences, 

that allows decisions to be made about the action to be taken 

before performing this action, based on expectations of what 

will happen in future situations. There are simpler 

reinforcement learning algorithms that do not use models, 

working simply on the basis of cycles of trial-error repetitions; 

by contrast, the approaches that use models are more robust, 

being able to make those decisions and plan their actions with a 

long-term view. 

The data for a RL problem is generated dynamically. The 

environment is responsible for providing the feedback on the 

action that the agent performed. With that feedback, the agent 

will update its beliefs on what are the best actions are. Then, it 

will act and learn from feedback again, repeating this process 

over and over; effectively, this is the training loop of a RL 

algorithm, and where the learning occurs. The RL algorithm 

that controls the agent guides its discovery of what the best 

decisions are in order to maximize a reward; i.e. the agent is 

not told what to do, but instead must realize which actions 

provide the best rewards by attempting them (hence the cause 

effect paradigm).  

Given that there is no need for pre-existing data and the 

extraordinary results that were achieved recently (e.g. 

DeepMind’s AlphaGo [18] or the demonstration of 

ambidextrous manipulation skills [19]), it is unquestionable 

that RL is one of the most powerful and promising fields of 

research, envisioned by many as the future of artificial 

intelligence [20].  

However, RL applications are not yet unbeatable. Currently, 

the main shortcomings of RL are the enormous amounts of 

time required to train an agent and the difficulty in creating an 

agent that can act skillfully on environments that require 

reasoning or memory. The time and energy required to train 

agents is expected to go down as the field grows, since 

optimized versions of existing algorithms appear at a good rate, 

and novel methods in development are more focused on the 

runtime. The lack of capacity to reason or memorize may be an 

issue, but promising approaches have demonstrated how to 

teach agents using natural language instructions and small 

demonstrations with success [21], [22]. 
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C. Environments, Actions and Rewards 

A RL environment is the world were the agent is operating, 

which reacts to its actions. From the agent’s perspective, there 

is a goal (e.g. in a chess game, the goal is to win it) and it is 

necessary to interact with its current environment to achieve it. 

The actions of the agent affect the environment and, in doing 

so, change the options that are available in future interactions.  

From the environment perspective, it always is in one of 

many possible states. Whenever an action is performed by an 

agent (e.g. moving a piece in a chess game), the environment 

takes it as input and adapts its internal configuration in 

response, thereby changing to another state. 

Except in the utopian case of the existence of a perfect 

information environment, the effects that an agent's action may 

cause cannot be fully predicted [23]. Therefore, the agent must 

monitor the environment constantly. However, the agent 

always knows what its goal is, and can monitor the progress 

that is being made (e.g. an agent that plays chess knows if it is 

closer to winning).  

The agent makes use of the knowledge gathered by 

performing several actions and changes its beliefs, improving 

its ability to achieve the proposed goal (e.g. a chess-playing 

agent will be better at deciding which move will improve its 

chances of winning the game). The knowledge that the agent 

has is, essentially, a result of its exploration of the environment, 

through the validation of its goals (i.e. if it is achieved) and the 

rewards that are given by the environment (in response to the 

actions).  

The beliefs of the agent express how to act on a state. 

Pragmatically, it is a mapping from all the known states of the 

environment to the action to choose whenever that specific 

state is the current one; it is a parallel with what psychology 

identifies as sets of stimulus-response associations [2]. These 

beliefs are known as the agent’s policy, and this is the core of 

the agent since it can predict its behavior.  

The reward that is provided as feedback to the agent 

classifies actions as good, neutral, or bad. Consequently, it is 

essential to the definition of the goal of an agent: to maximize 

the rewards that it collects from the environment over time; e.g. 

if an action provides a low reward, the agent updates its beliefs 

(i.e. its policy) so that it chooses another action the next time it 

faces a similar situation. 

Rewards are immediate, received as feedback of actions. 

But it is possible to think of actions that provide lower rewards 

that may lead, at some point, to greater rewards (e.g. 

sacrificing a rook to conquer a queen in a chess game). That is 

the purpose of the internal value function of the agent: it tries 

to predict the total reward an agent might accumulate from the 

current state. In other words, it attempts to forecast the 

long-term reward of moving to a specific state, considering the 

states that are expected to emerge afterwards and the future 

rewards that they will provide.  

Considering the aforementioned information, the argument 

can be made that a high-quality environment is essential to 

have any success when dealing with a RL problem. Even in a 

situation where the finest, state-of-the-art RL algorithms are 

being used, it will all be worthless if the environment in 

question is not capable of providing good feedback. 

III. JSSP Formulation 

This section explains the characteristics that make the JSSP so 

interesting and unique, what should be done so that it can be 

solved using RL techniques, and how are RL and JSSPs 

defined. 

A JSSP consists in N jobs that must be processed on M 

machines at specific times, as detailed on section II.A, with the 

most common goal being the calculation of a solution that 

minimizes the makespan [4]. The conditions to define a RL 

problem are the specification of a goal to achieve, a set of 

possible actions, the states that the environment can be in and 

the policy of the agent. To define this problem, and as 

commonly used on solutions to RL applications [2], we 

propose the formulation of the JSSP as a Markov decision 

process (MDP). 

The MDP is composed by two elements: the entity that 

makes the decisions and the environment. The entity observes 

the state of the environment and chooses which action to take. 

That action is then executed on the environment, which will 

cause it to change to another state. As a result of the execution, 

the environment presents a reward to the entity that is making 

the decisions. With that reward, the entity’s objective is to 

discover the best way of making a decision in order to 

maximize the rewards that it gets. To reach the goal, the agent 

should be capable of interacting with a JSS environment where 

the actions that are available must allow it to allocate each job 

to a specific machine.  

The mathematical formulation of an MDP consists in a set of 

finite states S (with s ∈ S), a set of possible actions, A(s) in each 

state, a reward function, R(s) and a transition probability 

between a specific state and the current state, knowing that 

action a was chosen. The transition probability is formulated in 

equation (1), representing the probability of transitioning to 

state s’ from state s if action a is taken. 

 

P (s’, s | a)         (1) 

 

Most real-world environments make it impossible to know 

the transition probabilities between all states, and that is where 

the learning mechanisms of the RL agent that is solving the 

problem operate. As such, the formulation of a JSS MDP 

requires the definition of the states (S), actions (A) and a 

reward function (R). 

At first glance, the set of actions A of a JSSP seems 

reasonably straightforward to define. At any moment there is 

only one type of action that can be done: assign an operation to 

a machine. However, having only one type of action does not 

mean that the problem is not complex. Deciding which 

operation will be allocated next is the core of a scheduling 

problem. If we consider a problem with 50 jobs, each with 10 

operations to be executed on 10 machines, and assuming that 

no jobs are planned into the future, at any moment, the number 

of operations that can be allocated will be 500. Hence, the 

action space A shall contain all the possible allocations that can 

be made at a specific moment, and the key decision that the RL 

agent shall take is which of the allocations shall be done. 

The set of states’ S contains all possible states of a RL 

problem. For a JSSP to be converted into an MDP, it is 

necessary to deliberate that the state only changes whenever a 

new job allocation is made. Considering that all states are not 
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subjects of the previous states (i.e. in equation (1), s’ is only 

conditioned by s and a), set S is in accordance with the MDP 

requirements [24]. This paper proposes that S is the collection 

of all solutions resulting from the possible permutations that a 

scheduling plan may have. This means that there is a state that 

represents each possibility of a job allocation to a machine. 

However, it is important to state that this does not mean that 

the implementation of the environment must make this 

calculation beforehand (or ever, for what it is worth). 

Calculating such a huge amount of possibilities would make 

this environment very slow on anything but machines with high 

computational powers; and that is a deal breaker for RL 

algorithms, since millions of iterations must be made in order 

to learn. What this definition means is that the set of states S, 

formally, contains all those permutations. In practice, the 

learning algorithm has to decide how to handle this information; 

e.g. a feasible approach would be to disregard all the possible 

permutations, focusing instead on the information of the state 

that is being experienced and understanding the effect that the 

chosen action will have (leading to s’). 

The reward function determines the expected reward that is 

received after transitioning from one state to another. To 

define a reward, it is necessary to consider what the goal of the 

agent is. This proposal suggests that the JSS formulation (as a 

RL problem) shall use the makespan minimization as its 

objective. The reward shall be a ratio that estimates the benefit 

of the chosen action against its cost, considering the makespan 

minimization goal. The proposed formula for the reward 

function R is presented in Figure 1. The makespan difference is 

calculated using the known optimum values for the problems 

that are being solved. 

 

 

R  =  

 
 
 
 

 
 
 

𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,       − 1.0
𝑉𝑎𝑙𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛,          0.0

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 <  250,       1.0
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 <  450,       0.6

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 <  650,      0.4
 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 <  1500,    0.1 
  𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 >  1500,   0.0 

 

 

Figure 1. Recommended reward function 

 

Considering the way that RL approaches work and the 

nature of JSSPs, the order that the actions are taken can have a 

major impact on the total reward. The agent shall learn how to 

best navigate the decision paths that can be taken, discovering 

how to achieve its goals. 

With the proposed formulation of the JSSP as a MDP, an 

agent with learning capabilities would be able to evaluate its 

environment, analyze its state and choose the actions that will 

maximize the total reward that is collected, taking into account 

its predefined goal. 

IV. JSS Environment For RL Agents 

Recent developments in RL have achieved incredible results 

(see section II.B). Analyzing the success that DeepMind’s 

AlphaGo [25] achieved, it is clear that it was propelled by the 

newfound capacity of its novel algorithm to learn from millions 

of simulated games of Go. But to learn from that huge amount 

of games, an accurate simulator of the game of Go had to be 

developed (amongst many other components). AlphaGo - the 

agent that was created – used an appropriate simulator of the 

game of Go to play over and over against itself. Without the 

environment that simulated this game, even these advanced 

algorithms would not be capable of achieving satisfactory 

results. 

Simulated environments that allow RL agents to effortlessly 

interact (and, hence, learn) are the key to the recent 

breakthroughs in RL. Nevertheless, these innovations are very 

recent, and no work has been done yet in the scheduling 

optimization field and, precisely, on the construction of a 

scheduling environment to train and evaluate agents that aim to 

solve the JSSP. That is the main motivation for this work; the 

design and implementation of a RL environment for the 

proposed JSSP. 

In 2016, OpenAI released OpenAI Gym [26], which 

proposed an unified standard for RL benchmark problems and 

how the environments are implemented. This standard 

provides two major advantages: the ability to create 

comparisons between RL algorithms and the fact that it enables 

academics to specialize their work, since they can focus only 

on one side of the problem: either RL algorithms or the 

development of custom environments for specific realities. 

This paper puts forward a custom environment for RL 

agents that applies the standard defined in OpenAI Gym. To 

comply with it, a number of standard components must be 

developed [26]. The key ones are the reset function, the 

stepping mechanism (how the agents interact) and the reward 

structure. 

The reset function is where the environment instances the 

defined JSSP, parsing its data to calculate the proper number 

of machines, jobs and jobs’ operations that should be allocated 

to create a solution. The reset function is parameterizable, so 

that different problems can be executed. The JSSP problem 

instances must comply, by default, with the OR-Library format, 

developed by John Beasley [27]. The adoption of a standard 

format allows for quicker experimentation and validation of 

results since the optimal solutions are known. The Taillard 

format [28] is also supported; even if it is mostly applied on 

Flow-shop problems [4]. 

The stepping mechanism is how an agent can designate what 

the next action shall be. Here, the agent can select what job to 

plan next. There is also the possibility to work at an operational 

level, allocating each single operation at a time.  

The reward is given to the agent as an output of the stepping 

mechanism, since it is the feedback from the environment 

concerning the latest action chosen by the agent. The reward 

structure that is used on the proposed implementation is in 

accordance with the one proposed in Figure 1. 

To better explain these functions let us present an illustrated 

example. For that, consider that there is a problem instance, 

given as input to the proposed environment, that is composed 

by 3 jobs (T1 to T3), with 3 operations each, and 3 machines 

where these are executed. Instancing the problem on the 

environment means that the reset function would be invoked. 

After the problem instance is loaded the agent would be able to 

start making decisions; To do that, the agent would use the 

described stepping mechanism. If he decides that the first 

action shall be to allocate operation T1.1, the plan will change 

to the one represented in Figure 2.  
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Figure 2. Plan after the action that allocates job T1.1 

 

The response of the environment to the action that allocated 

T1.1 would be to change to a new state (with T1.1 on machine 

1) and to provide the agent with a neutral 0.0 reward, since it 

was a valid allocation. Then, the agent could, for example, 

decide to allocate either T2.1 or T3.1, as depicted in Figure 3 

and Figure 4, respectively. If it tried to allocate T1.1 again on a 

different machine, or T2.1 at the same time as T1.1, the action 

would be deemed as invalid, the internal state representation 

would stay the same and the agent would receive a -1.0 

reward.  

 

 
Figure 3. Plan after the second action if T2.1 is executed first 

 

 
Figure 4. Plan after the second action if T3.1 is executed first 

 

This process of allocating an operation to a specific machine 

would go on until a valid plan is reached. The final plan could, 

perhaps, be similar to the one presented in Figure 5. When the 

final allocation is made the environment will compare the 

makespan of the plan with the optimum known value. Since 

this is a very simple example the reward would be of 1.0 – the 

distance to the optimum is lower than 250. 

  

 

 
Figure 5. Plan with all jobs allocated 

 

The rewards that are given to the agent are scaled, and 

fluctuate between -1 and 1. This makes it so that even if the 

agent can only choose neutral or negative reward actions, there 

should always be actions that are better than the others. When 

it reaches a solution, the agent would then need to be able to 

use long-term rewards mechanisms of modern algorithms 

(such as Deep Q-learning [29]) to use this information to 

greatly improve its performance. 

Ideally, a good environment should be one where it is 

possible to iterate exceedingly fast and that has all the 

scheduling rules being employed. The rules that the proposed 

environment validates are related to the acceptability of the 

final scheduling plan. Common scheduling rules, such as the 

order in which the operations of the jobs are assigned and the 

machines where the operations are executed, are validated with 

each action of the agent. 

Overall, the environment guarantees that the agent cannot 

perform invalid job allocations. This makes it easier for the 

training algorithms that are used to improve the performance 

of the agent. 

The developed environment includes a set of standard 

agents to interact with it that follow common heuristics that 

planners use in real-world scenarios [30]. These are: 

 After last operation – This agent will always choose as its 

next action the allocation of the next job immediately after 

the last operation on the current plan. It follows the 

predefined order of jobs of the JSSP (i.e. if the problem has 

15 jobs, job 1 would be first and job 15 the last one 

allocated). 

 

 First available slot – This agent will consider the job that 

needs to be planned and allocate it on the first available slot. 

This follows a heuristic that will lead to the reduction of idle 

times on the final plan [8]. 

 

 Biggest job first – This agent analyses all the jobs that must 

be planned and orders them considering their size, 

decreasingly. Allocates them on the first available slot.  

 

 Smallest job first – Similar to the previous one, but instead 

orders increasingly.  

 

 Random – this agent makes random choices on what should 

be planned next.  

 

These agents do not include any type of learning or 

inferences from their actions, since that was not the objective; 

the goal of these agents is to provide a stable baseline that can 

be used to quickly test the environment. These tests can be 

made to assess the suitability of the solutions and to swiftly 

validate the JSSP that is used as input, i.e. if the input data that 

is given to the environment is not ok for some reason (e.g. jobs 

are not completed, missing machine information), these agents 

are capable of exposing it. 

Nevertheless, even if the baseline agents have no learning 

mechanisms included, that is the main use case for this RL 

environment. Learning algorithms shall benefit from their 

existence, reducing drastically the development efforts [4].  

This environment has been designed so that intelligent 

agents can be trained to solve JSSP using RL techniques. 

These agents shall be part of a complete scheduling system, 

composed by the artificial intelligence module, which contains 

the intelligent agent and the proposed environment, and by the 

scheduling module, which establishes all of the problem rules, 

supports the decoding process of academic JSSP instances and 

guarantees that all problem components are well-defined: 

machines, jobs and operations. An overall view of the 

proposed architecture is shown in Figure 6. 
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Figure 6. Diagram of the proposed architecture 

V. Conclusions and Future Works 

A novel RL environment that takes advantage of the latest 

developments of the machine learning field to solve JSSPs was 

presented. A JSSP has many intricacies, and small decisions 

can have a huge impact on the performance of a plan. The key 

decisions when solving a JSSP regard which jobs to allocate to 

which machines and in what order, considering the defined 

goal (e.g. comply with job deadlines) and/or performance 

indicators (e.g. the makespan of the proposed solution).  

Current techniques that solve JSSPs are stable and well 

researched but are still considered to have many limitations [4]. 

Hence the need for machine learning techniques from one of its 

most promising fields; RL agents present an incredible 

advantage by not needing any pre-existing data, since they are 

capable of gaining knowledge from its own interactions with 

the environment (mirroring what is believed to be the human 

way of learning [3]). 

RL solutions contain two key components: an agent that 

learns how to solve a problem, and an environment where the 

problem is modelled. This proposal details both but focuses on 

the environment: due to this being an original proposal and 

considering the complexities of the JSSP, it is essential to have 

a working environment develop an agent. 

Every part of the proposed environment is detailed on this 

paper. Beginning with a formal definition of a JSSP as a RL 

problem (using an MDP mathematical approach) that is later 

used as a model for the environment, the paper also presents 

the technical characteristics and decisions that were made in 

order to achieve a quality implementation of the proposed 

environment.  

Future work includes the research and development of 

agents that are capable of learning on this JSS environment. 

The statistical significance validation of these agents shall be 

done in comparison to standard benchmarks (hence the 

support of common formats [27], [28]). Then, the strategy is 

to develop a full scheduling decision support system that 

employs the developed agent. When the system is operational, 

it shall be deployed into real-world problems. At last, there 

shall be the disclosure, via scientific publication, of the 

achieved results and conclusions, including a thorough 

discussion of the key decisions that were taken to achieve the 

final system architecture. 

References 

[1] M. L. Pinedo, Scheduling: Theory, algorithms, and 

systems, 5th ed. Springer International Publishing, 

2016. 

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning: 

An Introduction, Second. The MIT Press, 2018. 

[3] E. A. Ludvig, M. G. Bellemare, and K. G. Pearson, “A 

primer on reinforcement learning in the brain: 

Psychological, computational, and neural 

perspectives,” in Computational neuroscience for 

advancing artificial intelligence: Models, methods 

and applications, IGI Global, 2011, pp. 111–144. 

[4] B. Cunha, A. M. Madureira, B. Fonseca, and D. 

Coelho, “Deep Reinforcement Learning as a Job Shop 

Scheduling Solver: A Literature Review,” in Hybrid 

Intelligent Systems, A. M. Madureira, A. Abraham, N. 

Gandhi, and M. L. Varela, Eds. Cham: Springer 

International Publishing, 2020, pp. 350–359. 

[5] K. N. McKay, F. R. Safayeni, and J. A. Buzacott, 

“Job-shop scheduling theory: What is relevant?,” 

Interfaces (Providence)., vol. 18, no. 4, pp. 84–90, 

1988. 

[6] S. A. Cook, “The complexity of theorem-proving 

procedures,” in Proceedings of the third annual ACM 

symposium on Theory of computing, 1971, pp. 

151–158. 

[7] T. Yamada, T. Yamada, and R. Nakano, “Genetic 

Algorithms for Job-Shop Scheduling Problems,” Mod. 

Heuristi Decis. Support, pp. 474--479, 1997. 

[8] B. Cunha, A. Madureira, J. P. Pereira, and I. Pereira, 

“Evaluating the effectiveness of Bayesian and Neural 

Networks for Adaptive Schedulling Systems,” in 2016 

IEEE Symposium Series on Computational 

Intelligence, SSCI 2016, 2017, pp. 1–6. 

[9] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, “Review 

of job shop scheduling research and its new 

perspectives under Industry 4.0,” J. Intell. Manuf., 

2019. 

[10] R. L. Graham, “Bounds on Multiprocessing Timing 

Anomalies,” SIAM J. Appl. Math., 1969. 

[11] K. Sörensen, “Metaheuristics—the metaphor 

exposed,” Int. Trans. Oper. Res., vol. 22, no. 1, pp. 

3–18, 2015. 

[12] K. Sörensen, M. Sevaux, and F. Glover, “A History of 

Metaheuristics,” in Handbook of Heuristics, R. Martí, 

P. M. Pardalos, and M. G. C. Resende, Eds. Cham: 

Springer International Publishing, 2018, pp. 791–808. 

[13] A. V Joshi, Machine Learning and Artificial 

Intelligence. Springer, 2020. 

[14] E. L. Thorndike, “The Law of Effect,” Am. J. Psychol., 

1927. 

[15] P. I. Pavlov, Conditioned reflexes: an investigation of 

the physiological activity of the cerebral cortex. 

London: Oxford University Press, 1927. 

[16] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. 

Moritz, “Trust region policy optimization,” in 

Proceedings of the 32nd International Conference on 

Machine Learning (ICML-15), 2015, pp. 1889–1897. 

[17] R. S. Sutton, “Reinforcement Learning: Past, Present 

and Future,” in Simulated Evolution and Learning, 

1999, pp. 195–197. 

[18] D. Silver et al., “Mastering chess and shogi by 

self-play with a general reinforcement learning 



Cunha et al. 238 

algorithm,” 2017. [Online]. Available: 

arXiv:abs/1712.01815. 

[19] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar, 

“Deep Dynamics Models for Learning Dexterous 

Manipulation,” 2019. [Online]. Available: 

arXiv:abs/1909.11652. 

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” 

Nature, vol. 521, no. 7553, p. 436, 2015. 

[21] R. Kaplan, C. Sauer, and A. Sosa, “Beating Atari with 

Natural Language Guided Reinforcement Learning,” 

2017. [Online]. Available: arXiv:abs/1704.05539. 

[22] T. Salimans and R. Chen, “Learning Montezuma’s 

Revenge from a Single Demonstration,” 2018. 

[Online]. Available: arXiv:abs/1812.03381. 

[23] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious 

self-play in extensive-form games,” in International 

Conference on Machine Learning, 2015, pp. 

805–813. 

[24] T. Zhang, S. Xie, and O. Rose, “Real-time job shop 

scheduling based on simulation and Markov decision 

processes,” in Proceedings - Winter Simulation 

Conference, 2017, pp. 3899–3907. 

[25] D. Silver et al., “Mastering the game of Go without 

human knowledge,” Nature, vol. 550, no. 7676, pp. 

354–359, Oct. 2017. 

[26] G. Brockman et al., “OpenAI Gym,” 2016. [Online]. 

Available: arXiv:abs/1606.01540. 

[27] J. E. Beasley, “OR-Library: distributing test problems 

by electronic mail,” J. Oper. Res. Soc., vol. 41, no. 11, 

pp. 1069–1072, 1990. 

[28] E. Taillard, “Benchmarks for basic scheduling 

problems,” Eur. J. Oper. Res., vol. 64, no. 2, pp. 

278–285, 1993. 

[29] V. Mnih et al., “Playing Atari with Deep 

Reinforcement Learning,” 2013. [Online]. Available: 

arXiv:abs/1312.5602. 

[30] A. Madureira et al., “Using personas for supporting 

user modeling on scheduling systems,” in 2014 14th 

International Conference on Hybrid Intelligent 

Systems, HIS 2014, 2014, pp. 279–284. 

 

 

Author Biographies 

Bruno Cunha is an invited professor at the Institute of 

Engineering–Polytechnic of Porto (ISEP/IPP) and a 

researcher of the Interdisciplinary Studies Research Center 

(ISRC). He received his degree in informatics engineering 

in 2013 and master’s degree of computer science in 

knowledge-based and decision support technologies in 

2015 from the Institute of Engineering–Polytechnic of Porto 

(ISEP/IPP). He is currently pursuing his PhD studies at the 

University of Trás-os-Montes and Alto Douro (UTAD). His 

research interests involve machine learning, optimization 

algorithms and computational intelligence. 

 

Ana Madureira was born in Mozambique, in 1969. She 

got his BSc degree in Computer Engineering in 1993 from 

ISEP, Master degree in Electrical and Computers 

Engineering–Industrial Informatics, in 1996, from FEUP, 

and the PhD degree in Production and Systems, in 2003, 

from University of Minho, Portugal. She became IEEE 

Senior Member in 2010. She had been Chair of IEEE 

Portugal Section (2015-2017), Vice-chair of IEEE Portugal 

Section (2011-2014) and Chair/Vice-Chair of IEEE-CIS 

Portuguese chapter. She was Chair of University 

Department of IEEE R8 Educational Activities 

Sub-Committee (2017-2018). She is IEEE R8 Secretary 

(2019-2020). She is External Member Evaluation 

Committee of the Agency for Assessment and 

Accreditation of Higher Education - A3ES for the scientific 

area of Informatics of Polytechnic Higher Education (since 

2012). Currently she is Coordinator Professor at the 

Institute of Engineering–Polytechnic of Porto (ISEP/IPP) 

and Director of the Interdisciplinary Studies Research 

Center (ISRC). In the last few years, she was author of 

more than 100 scientific papers in scientific conference 

proceedings, journals and books.  

 

Benjamim Fonseca is an Assistant Professor with 

Habilitation at the University of Trás-os-Montes and Alto 

Douro (UTAD) and researcher at INESC TEC, in Portugal. 

His main research and development interests are 

collaborative systems, mobile accessibility and immersive 

systems. He authored or co-authored over a hundred 

publications in these fields, in several international journals, 

books and conference proceedings, and participates in the 

review and organization of various scientific publications 

and events. He is also co-founder and CEO of 4ALL 

Software, UTAD's spin-off that works in the development 

of innovative software, implementing complex digital 

platforms and interactive solutions. 


