
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 12 (2020) pp. 231-238

© MIR Labs, www.mirlabs.net/ijcisim/index.html

MIR Labs, USA

Received: 15 April, 2020; Accepted: 21 May, 2020; Published: 20 June, 2020

Reinforcement Learning Environment for Job Shop

Scheduling Problems

Bruno Cunha1, Ana Madureira2, and Benjamim Fonseca3

1,2 Interdisciplinary Studies Research Center, Institute of Engineering - Polytechnic of Porto,

Porto, Portugal

bmaca@isep.ipp.pt

amd@isep.ipp.pt

3 INESC TEC and University of Trás-os-Montes and Alto Douro (UTAD),

Vila Real, Portugal

benjaf@utad.pt

Abstract: The industrial growth of the last decades created a

need for intelligent and autonomous systems that can propose

solutions to scheduling problems efficiently. The job shop

scheduling problem (JSSP) is the most common formulation of

these real-world scheduling problems and can be found in

complex fields, such as transportation or industrial assemblies,

where the ability to quickly adapt to unforeseen events is critical.

Using the Markov decision process mathematical framework,

this paper details a formulation of the JSSP as a reinforcement

learning (RL) problem. The formulation is part of a proposal of a

novel environment where RL agents can interact with JSSPs that

is detailed on this paper, including a comprehensive explanation

of the design process, the decisions that were made and the key

lessons learnt. Considering the need for better scheduling

approaches on modern manufacturing environments, the

limitations that current techniques have and the major

breakthroughs that are being made on the field of machine

learning, the environment proposed on this paper intends to be a

major contribution to the JSSP landscape, enabling academics

from different areas to focus on the development of new

algorithms and effortlessly test them on academic and real-world

benchmarks.

Keywords: Reinforcement Learning, Job Shop Scheduling,

Simulation, Optimization, Machine Learning.

I. Introduction

The industrial growth of the last decades stimulated the

necessity for intelligent systems to efficiently support

manufacturing environments, since they must have the ability

to rapidly adjust to unforeseen events. The scheduling

procedure of modern, real-world manufacturing environments

still has many difficulties in dealing with unforeseen events, and

the human decisions that are made do not convey into

optimized plans. Hence, intelligent and autonomous systems

are required so that automatic solutions to scheduling

problems can be found quickly and as optimized as possible.

Even a small reduction of the time required to calculate an

improved schedule can have a significant impact in the

performance of an industrial business.

Scheduling has always been one of the most complex and

impacting problems that the scientific community has

researched, with scientists from artificial intelligence,

operational research and scheduling theory [1] combining to

propose several methods that attempt to solve scheduling

problems. JSS is the most used formulation of the scheduling

problem and is commonly applied in fields such as

transportation (e.g. flight scheduling, staff allocation) or

industrial assemblies (e.g. task distribution, resource

assignment). A Job Shop is a setting where certain resources

exist and must execute specific operations. Solutions to a JSSP

must define where each operation will be executed and at

which time interval that will happen. This is a classical

optimization problem, where the difficulty is in finding the

schedule that best takes advantages of the resource’s usage.

The theory that humans learn by interacting with the

environment is, probably, the most natural one and the easier to

accept when we consider the nature of learning [2]. This is the

key concept behind RL: perform an action, understand its

effect, and learn something from it. This cause and effect

relation is sustained by the scientific investigation of the human

behavior conducted by psychologists [3].

The last decade has seen a huge expansion of the machine

learning field. The computational power, which was previously

a bottleneck for machine learning researchers, is now so widely

accessible and incredible powerful that breakthroughs are

being made constantly. RL, a subfield of machine learning, has

benefited greatly not only from these increases of computation

power, but also from the recent innovations on how to train

agents to solve a specific problem. Taking that into

consideration, the main contributions of this paper are the

formulation of JSSPs as a RL problem and a proposal of an

original RL environment that shall allow the application of the

latest RL techniques on JSSPs. Considering the available

options [4], RL emerges as the clear choice to solve many of

Cunha et al. 232

the limitations of the current methods that are used to solve

JSSPs.

To use RL on JSSPs two key components must be

developed: an intelligent agent that makes the scheduling

decisions and an environment where that agent learns how to

act. This paper focuses on the environment component.

Although one is not very useful without the other, the correct

implementation and execution of an environment is crucial: an

inferior agent could still be capable of achieving a solution, but

a mediocre environment might make it so that all solutions are

invalid (e.g. if the rules are not validated correctly). Also, there

is only need for one environment; after its development, several

agents with specific learning algorithms can then be made to

achieve the best possible results.

Considering the need for improved scheduling procedures

on modern manufacturing settings, the limitations that current

techniques have and the major breakthroughs that are being

made on the field of machine learning, the environment

proposed on this paper aspires to be a major contribution to the

JSSP landscape.

The remaining sections are organized as follows: Section II

starts by presenting an overview of the key concepts of the

related work, fundamental to the proposal that this paper puts

forward; Section III proposes a formulation of the JSSP as a

RL problem; Section IV contains the details of the developed

JSS environment for RL agents; and, at last, section IV

contains the final conclusions and puts forwards the planned

future works.

II. Literature Review

This section contains a summary on important topics that are

related to the work proposed in this paper.

A. Job Shop Scheduling

The Job Shop problem is a scheduling problem that consists on

the allocation of n manufacturing orders (known as jobs), J1, J2,

J3, … Jn, in m machines, M1, M2, M3, … Mn, which are

physically available in an industrial environment, such as a

factory or a workshop (hence the job shop name). Each

manufacturing order is characterized by a specific number of

operations. Each of these operations is represented by oij,

where i represents the order that the operation belongs to and j

represents the precedence of the operation (e.g. o23 symbolizes

the third operation of the second order).

 Hence, a Job Shop problem P is defined by the collection of

machines, orders and operations, which establishes P as the

(M,J,O) set.

Each operation also as an associated processing time, pij,

that is known, which represents the number of time units that is

necessary to completely process operation oij.

On a job shop environment there are some basic restrictions

that must be respected. These are:

 All operations of a job can only be executed when the

previous operation is completed, except in the case of the

first one.

 The operations of a given job cannot take precedence over

operations of another job, i.e. there is only precedence

between operations of the same job.

 An operation that has already started (i.e. is being

processed) cannot be interrupted.

 A machine can only execute one job at a time.

 A job can only be executed by one machine simultaneously,

i.e. machine changes can only be made between operations.

Even that these restrictions may seem like a simplification of

the problem that is faced by several real-world industries this

approach is still very useful and advantageous, given that it

allows us to obtain very valuable information, e.g. the best

order of execution of the available jobs [5].

Calculating a scheduling plan is, after all, a relatively simple

task. Considering that we have N jobs that must be processed

on M machines at specific times, the complexity in JSSPs is the

calculation of the starting time of each operation on its

respective machines. However, a scheduling plan, by itself, is

of little use. What is required, naturally, is an optimized

dispatching plan that presents the optimum solution.

Unfortunately, there is no viable way to calculate an optimized

plan given the complexity of this problem.

The JSSP is considered to be of very hard resolution, and is

classified as NP-hard [6]. Actually, of all the NP-Hard

problems, JSSP are one of the hardest considering how

complicated they are to solve [7].

From a large set of possible plans, it is necessary to choose

the one that offers the best performance (according to the

metric chosen). The possible combinations are quite high:

considering n orders on m machines, the number of possible

plans will be n!m. A small problem of 5 machines with 5 orders

originates 24883200000 possible combinations; and a (still

relatively small) problem of 10 machines and 10 orders creates

a troublesome combination amount: 10!10 = 395965. A great

part of these solutions would be invalid (due to violations of

the basic restrictions) but, nevertheless, it is unfeasible to

validate such a high number of solutions.

Considering its complexity, there are no algorithms to obtain

optimal solutions to large JSSP in a timely manner. It is

therefore necessary to use approximate approaches to solve

this problem, allowing to find solutions that are not optimal,

but are good enough to put into production.

When the optimization of something is mentioned this

usually refers to the choice of an option (from a diverse range)

that will minimize or maximize a certain objective function.

The most common objective when solving a JSSP is to create a

solution that minimizes the makespan [4] – the time at which

the last operation is concluded. Even small improvements to

the makespan of a plan could have a great impact on the costs

and efficiency of a manufacturing system [8].

JSSPs have always been a focus of the scientific community,

especially in the disciplines of artificial intelligence and

operational research [9]. The first publication that analyzed the

performance of algorithms solving the JSSP was made by R.

Graham, in 1969 [10]; But even today it is still a very active

field, since the complexity of the problem keeps attracting

researchers to it.

Considering a recently published literature review, the

general consensus methods to solve a JSSP, nowadays, is to

use a metaheuristic [4]. The advantages are the speed at which

it can achieve a good solution and the low computational effort.

Reinforcement Learning Environment for Job Shop Scheduling Problems 233

However, there is still much room for improvements [11]. The

solutions obtained by metaheuristics are, mostly, just good

enough to be used but far from the optimal ones; they tend to

not generalize well to instances of other problems (it might be

successful on a specific JSSP instance but fail completely in

another one); and a significant effort is required to develop an

effective metaheuristic solver [4], [12].

B. Reinforcement Learning

Machine learning can be divided in three fields [13]: supervised

learning, unsupervised learning and RL. Supervised learning

problems operate with a labelled dataset, i.e. we know

precisely how to classify each example in the data.

Unsupervised learning also uses a traditional dataset, but it is

unlabeled, i.e. we do not know the correct classification of

each data point and have no information on the relations

between examples. RL is remarkably different from its

counterparts given that it uses no pre-existing data.

Essentially, RL can be defined by the process of an agent

learning the best actions based on feedback provided by the

environment [4]. The feedback contains a reward for the agent,

which interprets it to draw a conclusion of the effects of the

chosen action. This cause and effect (usually labelled as action

and reward) relation is inspired in the scientific research of the

human behavior conducted in psychology, going back as far as

the beginning of the twentieth century [14], [15].

Any problem of reinforcement learning has two main

components: the agent and the environment. The agent, which

needs to have a well-defined goal, is the entity that decides the

actions to be taken and that can ascertain the state of the

environment, even with uncertainties. The environment is

where the agent operates and is related to the problem to be

solved (e.g. in a chess game, the environment will be the board).

However, besides the agent and the environment there are four

critical components to any reinforcement learning system: the

reward, the policy, the value function of each state and the

environment model [4].

The policy is what defines the behavior of the agent. The

policy maps the states of the environment to the actions that

the agent must have in those states. The manner in which it is

defined can be simple (a table with the mappings) or quite

complex (intelligent search methods), with options being

stochastic and having an associated probability [16]. Thus, the

policy is a core component of a reinforcement learning system,

as it is sufficient by itself to establish what behavior the agent

will have.

The reward is how the agent's goal is defined. After each

agent action, the environment returns the reward. The goal of

an agent is to maximize the total reward received throughout

its interaction with the environment, regardless of the type of

problem. Thus, and drawing a parallel with Thorndike's effect

law [14], the reward has a major effect on the iterative

construction of the agent policy and establishes what actions

the agent should take: if an action chosen by the current policy

receives a low reward, the policy should be updated to choose

another available action when the agent is in a similar situation

again.

If the reward is related to immediate feedback from the

environment, the value function is what allows the agent to

take a long-term view. The value of a state is the total reward

that an agent can get from that state, i.e. the value indicates

how positive a state is considering future states and the reward

they may give. Without rewards there could be no state value,

since the sole purpose of the value is to estimate how a greater

total reward can be obtained. However, the value of a state is

more important when the agent has to consider all available

actions. The agent should opt for actions that lead to states

with the highest value and not the highest reward, because then

they will accumulate a higher total reward in the long run. As

would be expected, it is much more difficult to determine a

correct value function than a reward. While the rewards are

given directly by the environment, the value should be

estimated continuously through the agent's interactions with

the environment. This component is, in the author's opinion

(and according to one of the fathers of modern reinforcement

learning, Richard Sutton [17]) the most important of any

system implementing algorithms of this problem category.

The environment model is the component that seeks to

replicate the behavior of the environment, so that inferences

can be made and predict how it will react to an action. Given a

state and an action, the model should return the reward

associated to that action and calculate what the next state of

the environment will be. It is the model, through inferences,

that allows decisions to be made about the action to be taken

before performing this action, based on expectations of what

will happen in future situations. There are simpler

reinforcement learning algorithms that do not use models,

working simply on the basis of cycles of trial-error repetitions;

by contrast, the approaches that use models are more robust,

being able to make those decisions and plan their actions with a

long-term view.

The data for a RL problem is generated dynamically. The

environment is responsible for providing the feedback on the

action that the agent performed. With that feedback, the agent

will update its beliefs on what are the best actions are. Then, it

will act and learn from feedback again, repeating this process

over and over; effectively, this is the training loop of a RL

algorithm, and where the learning occurs. The RL algorithm

that controls the agent guides its discovery of what the best

decisions are in order to maximize a reward; i.e. the agent is

not told what to do, but instead must realize which actions

provide the best rewards by attempting them (hence the cause

effect paradigm).

Given that there is no need for pre-existing data and the

extraordinary results that were achieved recently (e.g.

DeepMind’s AlphaGo [18] or the demonstration of

ambidextrous manipulation skills [19]), it is unquestionable

that RL is one of the most powerful and promising fields of

research, envisioned by many as the future of artificial

intelligence [20].

However, RL applications are not yet unbeatable. Currently,

the main shortcomings of RL are the enormous amounts of

time required to train an agent and the difficulty in creating an

agent that can act skillfully on environments that require

reasoning or memory. The time and energy required to train

agents is expected to go down as the field grows, since

optimized versions of existing algorithms appear at a good rate,

and novel methods in development are more focused on the

runtime. The lack of capacity to reason or memorize may be an

issue, but promising approaches have demonstrated how to

teach agents using natural language instructions and small

demonstrations with success [21], [22].

Cunha et al. 234

C. Environments, Actions and Rewards

A RL environment is the world were the agent is operating,

which reacts to its actions. From the agent’s perspective, there

is a goal (e.g. in a chess game, the goal is to win it) and it is

necessary to interact with its current environment to achieve it.

The actions of the agent affect the environment and, in doing

so, change the options that are available in future interactions.

From the environment perspective, it always is in one of

many possible states. Whenever an action is performed by an

agent (e.g. moving a piece in a chess game), the environment

takes it as input and adapts its internal configuration in

response, thereby changing to another state.

Except in the utopian case of the existence of a perfect

information environment, the effects that an agent's action may

cause cannot be fully predicted [23]. Therefore, the agent must

monitor the environment constantly. However, the agent

always knows what its goal is, and can monitor the progress

that is being made (e.g. an agent that plays chess knows if it is

closer to winning).

The agent makes use of the knowledge gathered by

performing several actions and changes its beliefs, improving

its ability to achieve the proposed goal (e.g. a chess-playing

agent will be better at deciding which move will improve its

chances of winning the game). The knowledge that the agent

has is, essentially, a result of its exploration of the environment,

through the validation of its goals (i.e. if it is achieved) and the

rewards that are given by the environment (in response to the

actions).

The beliefs of the agent express how to act on a state.

Pragmatically, it is a mapping from all the known states of the

environment to the action to choose whenever that specific

state is the current one; it is a parallel with what psychology

identifies as sets of stimulus-response associations [2]. These

beliefs are known as the agent’s policy, and this is the core of

the agent since it can predict its behavior.

The reward that is provided as feedback to the agent

classifies actions as good, neutral, or bad. Consequently, it is

essential to the definition of the goal of an agent: to maximize

the rewards that it collects from the environment over time; e.g.

if an action provides a low reward, the agent updates its beliefs

(i.e. its policy) so that it chooses another action the next time it

faces a similar situation.

Rewards are immediate, received as feedback of actions.

But it is possible to think of actions that provide lower rewards

that may lead, at some point, to greater rewards (e.g.

sacrificing a rook to conquer a queen in a chess game). That is

the purpose of the internal value function of the agent: it tries

to predict the total reward an agent might accumulate from the

current state. In other words, it attempts to forecast the

long-term reward of moving to a specific state, considering the

states that are expected to emerge afterwards and the future

rewards that they will provide.

Considering the aforementioned information, the argument

can be made that a high-quality environment is essential to

have any success when dealing with a RL problem. Even in a

situation where the finest, state-of-the-art RL algorithms are

being used, it will all be worthless if the environment in

question is not capable of providing good feedback.

III. JSSP Formulation

This section explains the characteristics that make the JSSP so

interesting and unique, what should be done so that it can be

solved using RL techniques, and how are RL and JSSPs

defined.

A JSSP consists in N jobs that must be processed on M

machines at specific times, as detailed on section II.A, with the

most common goal being the calculation of a solution that

minimizes the makespan [4]. The conditions to define a RL

problem are the specification of a goal to achieve, a set of

possible actions, the states that the environment can be in and

the policy of the agent. To define this problem, and as

commonly used on solutions to RL applications [2], we

propose the formulation of the JSSP as a Markov decision

process (MDP).

The MDP is composed by two elements: the entity that

makes the decisions and the environment. The entity observes

the state of the environment and chooses which action to take.

That action is then executed on the environment, which will

cause it to change to another state. As a result of the execution,

the environment presents a reward to the entity that is making

the decisions. With that reward, the entity’s objective is to

discover the best way of making a decision in order to

maximize the rewards that it gets. To reach the goal, the agent

should be capable of interacting with a JSS environment where

the actions that are available must allow it to allocate each job

to a specific machine.

The mathematical formulation of an MDP consists in a set of

finite states S (with s ∈ S), a set of possible actions, A(s) in each

state, a reward function, R(s) and a transition probability

between a specific state and the current state, knowing that

action a was chosen. The transition probability is formulated in

equation (1), representing the probability of transitioning to

state s’ from state s if action a is taken.

P (s’, s | a) (1)

Most real-world environments make it impossible to know

the transition probabilities between all states, and that is where

the learning mechanisms of the RL agent that is solving the

problem operate. As such, the formulation of a JSS MDP

requires the definition of the states (S), actions (A) and a

reward function (R).

At first glance, the set of actions A of a JSSP seems

reasonably straightforward to define. At any moment there is

only one type of action that can be done: assign an operation to

a machine. However, having only one type of action does not

mean that the problem is not complex. Deciding which

operation will be allocated next is the core of a scheduling

problem. If we consider a problem with 50 jobs, each with 10

operations to be executed on 10 machines, and assuming that

no jobs are planned into the future, at any moment, the number

of operations that can be allocated will be 500. Hence, the

action space A shall contain all the possible allocations that can

be made at a specific moment, and the key decision that the RL

agent shall take is which of the allocations shall be done.

The set of states’ S contains all possible states of a RL

problem. For a JSSP to be converted into an MDP, it is

necessary to deliberate that the state only changes whenever a

new job allocation is made. Considering that all states are not

Reinforcement Learning Environment for Job Shop Scheduling Problems 235

subjects of the previous states (i.e. in equation (1), s’ is only

conditioned by s and a), set S is in accordance with the MDP

requirements [24]. This paper proposes that S is the collection

of all solutions resulting from the possible permutations that a

scheduling plan may have. This means that there is a state that

represents each possibility of a job allocation to a machine.

However, it is important to state that this does not mean that

the implementation of the environment must make this

calculation beforehand (or ever, for what it is worth).

Calculating such a huge amount of possibilities would make

this environment very slow on anything but machines with high

computational powers; and that is a deal breaker for RL

algorithms, since millions of iterations must be made in order

to learn. What this definition means is that the set of states S,

formally, contains all those permutations. In practice, the

learning algorithm has to decide how to handle this information;

e.g. a feasible approach would be to disregard all the possible

permutations, focusing instead on the information of the state

that is being experienced and understanding the effect that the

chosen action will have (leading to s’).

The reward function determines the expected reward that is

received after transitioning from one state to another. To

define a reward, it is necessary to consider what the goal of the

agent is. This proposal suggests that the JSS formulation (as a

RL problem) shall use the makespan minimization as its

objective. The reward shall be a ratio that estimates the benefit

of the chosen action against its cost, considering the makespan

minimization goal. The proposed formula for the reward

function R is presented in Figure 1. The makespan difference is

calculated using the known optimum values for the problems

that are being solved.

R  =  

𝐼𝑛𝑣𝑎𝑙𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, − 1.0
𝑉𝑎𝑙𝑖𝑑 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛, 0.0

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 < 250, 1.0
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 < 450, 0.6

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 < 650, 0.4
 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 < 1500, 0.1
 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑎𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 𝑚𝑎𝑘𝑒𝑠𝑝𝑎𝑛 𝑑𝑖𝑓𝑓 > 1500, 0.0

Figure 1. Recommended reward function

Considering the way that RL approaches work and the

nature of JSSPs, the order that the actions are taken can have a

major impact on the total reward. The agent shall learn how to

best navigate the decision paths that can be taken, discovering

how to achieve its goals.

With the proposed formulation of the JSSP as a MDP, an

agent with learning capabilities would be able to evaluate its

environment, analyze its state and choose the actions that will

maximize the total reward that is collected, taking into account

its predefined goal.

IV. JSS Environment For RL Agents

Recent developments in RL have achieved incredible results

(see section II.B). Analyzing the success that DeepMind’s

AlphaGo [25] achieved, it is clear that it was propelled by the

newfound capacity of its novel algorithm to learn from millions

of simulated games of Go. But to learn from that huge amount

of games, an accurate simulator of the game of Go had to be

developed (amongst many other components). AlphaGo - the

agent that was created – used an appropriate simulator of the

game of Go to play over and over against itself. Without the

environment that simulated this game, even these advanced

algorithms would not be capable of achieving satisfactory

results.

Simulated environments that allow RL agents to effortlessly

interact (and, hence, learn) are the key to the recent

breakthroughs in RL. Nevertheless, these innovations are very

recent, and no work has been done yet in the scheduling

optimization field and, precisely, on the construction of a

scheduling environment to train and evaluate agents that aim to

solve the JSSP. That is the main motivation for this work; the

design and implementation of a RL environment for the

proposed JSSP.

In 2016, OpenAI released OpenAI Gym [26], which

proposed an unified standard for RL benchmark problems and

how the environments are implemented. This standard

provides two major advantages: the ability to create

comparisons between RL algorithms and the fact that it enables

academics to specialize their work, since they can focus only

on one side of the problem: either RL algorithms or the

development of custom environments for specific realities.

This paper puts forward a custom environment for RL

agents that applies the standard defined in OpenAI Gym. To

comply with it, a number of standard components must be

developed [26]. The key ones are the reset function, the

stepping mechanism (how the agents interact) and the reward

structure.

The reset function is where the environment instances the

defined JSSP, parsing its data to calculate the proper number

of machines, jobs and jobs’ operations that should be allocated

to create a solution. The reset function is parameterizable, so

that different problems can be executed. The JSSP problem

instances must comply, by default, with the OR-Library format,

developed by John Beasley [27]. The adoption of a standard

format allows for quicker experimentation and validation of

results since the optimal solutions are known. The Taillard

format [28] is also supported; even if it is mostly applied on

Flow-shop problems [4].

The stepping mechanism is how an agent can designate what

the next action shall be. Here, the agent can select what job to

plan next. There is also the possibility to work at an operational

level, allocating each single operation at a time.

The reward is given to the agent as an output of the stepping

mechanism, since it is the feedback from the environment

concerning the latest action chosen by the agent. The reward

structure that is used on the proposed implementation is in

accordance with the one proposed in Figure 1.

To better explain these functions let us present an illustrated

example. For that, consider that there is a problem instance,

given as input to the proposed environment, that is composed

by 3 jobs (T1 to T3), with 3 operations each, and 3 machines

where these are executed. Instancing the problem on the

environment means that the reset function would be invoked.

After the problem instance is loaded the agent would be able to

start making decisions; To do that, the agent would use the

described stepping mechanism. If he decides that the first

action shall be to allocate operation T1.1, the plan will change

to the one represented in Figure 2.

Cunha et al. 236

Figure 2. Plan after the action that allocates job T1.1

The response of the environment to the action that allocated

T1.1 would be to change to a new state (with T1.1 on machine

1) and to provide the agent with a neutral 0.0 reward, since it

was a valid allocation. Then, the agent could, for example,

decide to allocate either T2.1 or T3.1, as depicted in Figure 3

and Figure 4, respectively. If it tried to allocate T1.1 again on a

different machine, or T2.1 at the same time as T1.1, the action

would be deemed as invalid, the internal state representation

would stay the same and the agent would receive a -1.0

reward.

Figure 3. Plan after the second action if T2.1 is executed first

Figure 4. Plan after the second action if T3.1 is executed first

This process of allocating an operation to a specific machine

would go on until a valid plan is reached. The final plan could,

perhaps, be similar to the one presented in Figure 5. When the

final allocation is made the environment will compare the

makespan of the plan with the optimum known value. Since

this is a very simple example the reward would be of 1.0 – the

distance to the optimum is lower than 250.

Figure 5. Plan with all jobs allocated

The rewards that are given to the agent are scaled, and

fluctuate between -1 and 1. This makes it so that even if the

agent can only choose neutral or negative reward actions, there

should always be actions that are better than the others. When

it reaches a solution, the agent would then need to be able to

use long-term rewards mechanisms of modern algorithms

(such as Deep Q-learning [29]) to use this information to

greatly improve its performance.

Ideally, a good environment should be one where it is

possible to iterate exceedingly fast and that has all the

scheduling rules being employed. The rules that the proposed

environment validates are related to the acceptability of the

final scheduling plan. Common scheduling rules, such as the

order in which the operations of the jobs are assigned and the

machines where the operations are executed, are validated with

each action of the agent.

Overall, the environment guarantees that the agent cannot

perform invalid job allocations. This makes it easier for the

training algorithms that are used to improve the performance

of the agent.

The developed environment includes a set of standard

agents to interact with it that follow common heuristics that

planners use in real-world scenarios [30]. These are:

 After last operation – This agent will always choose as its

next action the allocation of the next job immediately after

the last operation on the current plan. It follows the

predefined order of jobs of the JSSP (i.e. if the problem has

15 jobs, job 1 would be first and job 15 the last one

allocated).

 First available slot – This agent will consider the job that

needs to be planned and allocate it on the first available slot.

This follows a heuristic that will lead to the reduction of idle

times on the final plan [8].

 Biggest job first – This agent analyses all the jobs that must

be planned and orders them considering their size,

decreasingly. Allocates them on the first available slot.

 Smallest job first – Similar to the previous one, but instead

orders increasingly.

 Random – this agent makes random choices on what should

be planned next.

These agents do not include any type of learning or

inferences from their actions, since that was not the objective;

the goal of these agents is to provide a stable baseline that can

be used to quickly test the environment. These tests can be

made to assess the suitability of the solutions and to swiftly

validate the JSSP that is used as input, i.e. if the input data that

is given to the environment is not ok for some reason (e.g. jobs

are not completed, missing machine information), these agents

are capable of exposing it.

Nevertheless, even if the baseline agents have no learning

mechanisms included, that is the main use case for this RL

environment. Learning algorithms shall benefit from their

existence, reducing drastically the development efforts [4].

This environment has been designed so that intelligent

agents can be trained to solve JSSP using RL techniques.

These agents shall be part of a complete scheduling system,

composed by the artificial intelligence module, which contains

the intelligent agent and the proposed environment, and by the

scheduling module, which establishes all of the problem rules,

supports the decoding process of academic JSSP instances and

guarantees that all problem components are well-defined:

machines, jobs and operations. An overall view of the

proposed architecture is shown in Figure 6.

Reinforcement Learning Environment for Job Shop Scheduling Problems 237

Figure 6. Diagram of the proposed architecture

V. Conclusions and Future Works

A novel RL environment that takes advantage of the latest

developments of the machine learning field to solve JSSPs was

presented. A JSSP has many intricacies, and small decisions

can have a huge impact on the performance of a plan. The key

decisions when solving a JSSP regard which jobs to allocate to

which machines and in what order, considering the defined

goal (e.g. comply with job deadlines) and/or performance

indicators (e.g. the makespan of the proposed solution).

Current techniques that solve JSSPs are stable and well

researched but are still considered to have many limitations [4].

Hence the need for machine learning techniques from one of its

most promising fields; RL agents present an incredible

advantage by not needing any pre-existing data, since they are

capable of gaining knowledge from its own interactions with

the environment (mirroring what is believed to be the human

way of learning [3]).

RL solutions contain two key components: an agent that

learns how to solve a problem, and an environment where the

problem is modelled. This proposal details both but focuses on

the environment: due to this being an original proposal and

considering the complexities of the JSSP, it is essential to have

a working environment develop an agent.

Every part of the proposed environment is detailed on this

paper. Beginning with a formal definition of a JSSP as a RL

problem (using an MDP mathematical approach) that is later

used as a model for the environment, the paper also presents

the technical characteristics and decisions that were made in

order to achieve a quality implementation of the proposed

environment.

Future work includes the research and development of

agents that are capable of learning on this JSS environment.

The statistical significance validation of these agents shall be

done in comparison to standard benchmarks (hence the

support of common formats [27], [28]). Then, the strategy is

to develop a full scheduling decision support system that

employs the developed agent. When the system is operational,

it shall be deployed into real-world problems. At last, there

shall be the disclosure, via scientific publication, of the

achieved results and conclusions, including a thorough

discussion of the key decisions that were taken to achieve the

final system architecture.

References

[1] M. L. Pinedo, Scheduling: Theory, algorithms, and

systems, 5th ed. Springer International Publishing,

2016.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning:

An Introduction, Second. The MIT Press, 2018.

[3] E. A. Ludvig, M. G. Bellemare, and K. G. Pearson, “A

primer on reinforcement learning in the brain:

Psychological, computational, and neural

perspectives,” in Computational neuroscience for

advancing artificial intelligence: Models, methods

and applications, IGI Global, 2011, pp. 111–144.

[4] B. Cunha, A. M. Madureira, B. Fonseca, and D.

Coelho, “Deep Reinforcement Learning as a Job Shop

Scheduling Solver: A Literature Review,” in Hybrid

Intelligent Systems, A. M. Madureira, A. Abraham, N.

Gandhi, and M. L. Varela, Eds. Cham: Springer

International Publishing, 2020, pp. 350–359.

[5] K. N. McKay, F. R. Safayeni, and J. A. Buzacott,

“Job-shop scheduling theory: What is relevant?,”

Interfaces (Providence)., vol. 18, no. 4, pp. 84–90,

1988.

[6] S. A. Cook, “The complexity of theorem-proving

procedures,” in Proceedings of the third annual ACM

symposium on Theory of computing, 1971, pp.

151–158.

[7] T. Yamada, T. Yamada, and R. Nakano, “Genetic

Algorithms for Job-Shop Scheduling Problems,” Mod.

Heuristi Decis. Support, pp. 474--479, 1997.

[8] B. Cunha, A. Madureira, J. P. Pereira, and I. Pereira,

“Evaluating the effectiveness of Bayesian and Neural

Networks for Adaptive Schedulling Systems,” in 2016

IEEE Symposium Series on Computational

Intelligence, SSCI 2016, 2017, pp. 1–6.

[9] J. Zhang, G. Ding, Y. Zou, S. Qin, and J. Fu, “Review

of job shop scheduling research and its new

perspectives under Industry 4.0,” J. Intell. Manuf.,

2019.

[10] R. L. Graham, “Bounds on Multiprocessing Timing

Anomalies,” SIAM J. Appl. Math., 1969.

[11] K. Sörensen, “Metaheuristics—the metaphor

exposed,” Int. Trans. Oper. Res., vol. 22, no. 1, pp.

3–18, 2015.

[12] K. Sörensen, M. Sevaux, and F. Glover, “A History of

Metaheuristics,” in Handbook of Heuristics, R. Martí,

P. M. Pardalos, and M. G. C. Resende, Eds. Cham:

Springer International Publishing, 2018, pp. 791–808.

[13] A. V Joshi, Machine Learning and Artificial

Intelligence. Springer, 2020.

[14] E. L. Thorndike, “The Law of Effect,” Am. J. Psychol.,

1927.

[15] P. I. Pavlov, Conditioned reflexes: an investigation of

the physiological activity of the cerebral cortex.

London: Oxford University Press, 1927.

[16] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P.

Moritz, “Trust region policy optimization,” in

Proceedings of the 32nd International Conference on

Machine Learning (ICML-15), 2015, pp. 1889–1897.

[17] R. S. Sutton, “Reinforcement Learning: Past, Present

and Future,” in Simulated Evolution and Learning,

1999, pp. 195–197.

[18] D. Silver et al., “Mastering chess and shogi by

self-play with a general reinforcement learning

Cunha et al. 238

algorithm,” 2017. [Online]. Available:

arXiv:abs/1712.01815.

[19] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar,

“Deep Dynamics Models for Learning Dexterous

Manipulation,” 2019. [Online]. Available:

arXiv:abs/1909.11652.

[20] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,”

Nature, vol. 521, no. 7553, p. 436, 2015.

[21] R. Kaplan, C. Sauer, and A. Sosa, “Beating Atari with

Natural Language Guided Reinforcement Learning,”

2017. [Online]. Available: arXiv:abs/1704.05539.

[22] T. Salimans and R. Chen, “Learning Montezuma’s

Revenge from a Single Demonstration,” 2018.

[Online]. Available: arXiv:abs/1812.03381.

[23] J. Heinrich, M. Lanctot, and D. Silver, “Fictitious

self-play in extensive-form games,” in International

Conference on Machine Learning, 2015, pp.

805–813.

[24] T. Zhang, S. Xie, and O. Rose, “Real-time job shop

scheduling based on simulation and Markov decision

processes,” in Proceedings - Winter Simulation

Conference, 2017, pp. 3899–3907.

[25] D. Silver et al., “Mastering the game of Go without

human knowledge,” Nature, vol. 550, no. 7676, pp.

354–359, Oct. 2017.

[26] G. Brockman et al., “OpenAI Gym,” 2016. [Online].

Available: arXiv:abs/1606.01540.

[27] J. E. Beasley, “OR-Library: distributing test problems

by electronic mail,” J. Oper. Res. Soc., vol. 41, no. 11,

pp. 1069–1072, 1990.

[28] E. Taillard, “Benchmarks for basic scheduling

problems,” Eur. J. Oper. Res., vol. 64, no. 2, pp.

278–285, 1993.

[29] V. Mnih et al., “Playing Atari with Deep

Reinforcement Learning,” 2013. [Online]. Available:

arXiv:abs/1312.5602.

[30] A. Madureira et al., “Using personas for supporting

user modeling on scheduling systems,” in 2014 14th

International Conference on Hybrid Intelligent

Systems, HIS 2014, 2014, pp. 279–284.

Author Biographies

Bruno Cunha is an invited professor at the Institute of

Engineering–Polytechnic of Porto (ISEP/IPP) and a

researcher of the Interdisciplinary Studies Research Center

(ISRC). He received his degree in informatics engineering

in 2013 and master’s degree of computer science in

knowledge-based and decision support technologies in

2015 from the Institute of Engineering–Polytechnic of Porto

(ISEP/IPP). He is currently pursuing his PhD studies at the

University of Trás-os-Montes and Alto Douro (UTAD). His

research interests involve machine learning, optimization

algorithms and computational intelligence.

Ana Madureira was born in Mozambique, in 1969. She

got his BSc degree in Computer Engineering in 1993 from

ISEP, Master degree in Electrical and Computers

Engineering–Industrial Informatics, in 1996, from FEUP,

and the PhD degree in Production and Systems, in 2003,

from University of Minho, Portugal. She became IEEE

Senior Member in 2010. She had been Chair of IEEE

Portugal Section (2015-2017), Vice-chair of IEEE Portugal

Section (2011-2014) and Chair/Vice-Chair of IEEE-CIS

Portuguese chapter. She was Chair of University

Department of IEEE R8 Educational Activities

Sub-Committee (2017-2018). She is IEEE R8 Secretary

(2019-2020). She is External Member Evaluation

Committee of the Agency for Assessment and

Accreditation of Higher Education - A3ES for the scientific

area of Informatics of Polytechnic Higher Education (since

2012). Currently she is Coordinator Professor at the

Institute of Engineering–Polytechnic of Porto (ISEP/IPP)

and Director of the Interdisciplinary Studies Research

Center (ISRC). In the last few years, she was author of

more than 100 scientific papers in scientific conference

proceedings, journals and books.

Benjamim Fonseca is an Assistant Professor with

Habilitation at the University of Trás-os-Montes and Alto

Douro (UTAD) and researcher at INESC TEC, in Portugal.

His main research and development interests are

collaborative systems, mobile accessibility and immersive

systems. He authored or co-authored over a hundred

publications in these fields, in several international journals,

books and conference proceedings, and participates in the

review and organization of various scientific publications

and events. He is also co-founder and CEO of 4ALL

Software, UTAD's spin-off that works in the development

of innovative software, implementing complex digital

platforms and interactive solutions.

