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Abstract: In this paper, we are interested in the modeling and 

the resolution of the dynamic and discrete berth allocation 

problem which is noted DDBAP. To resolve this problem, we 

propose a heuristic approach of optimization which combines 

two concepts: agent and heuristics. This approach is based on the 

use of the multi-agent negotiation, the contract net protocol, and 

a set of heuristics such as the WorstFit arrangement technique 

and the LPT policy. The objective of our work is then, to solve 

the problem of scheduling n tasks on m parallel identical 

machines. The criterion that we aim to minimize is the makespan 

(in analogy with the P||Cmax problem) having a set of constraints 

to be satisfied. We developed our model of negotiation using the 

Jade platform. We finish this work by presenting various 

simulations to show the performance of the proposed heuristic 

and the contribution of our approach compared to other already 

existing approaches.  
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I. Introduction 

A. Context and problematic 

The transport problems are usually with a complexity that 

makes their resolution difficult and require the use of 

approximate methods and heuristics to resolve them. In this 

context, this paper is interesting in two main themes: 

scheduling and maritime transport. Given its economic and 

environmental objectives, companies have devoted significant 

efforts to the scientific research in scheduling, in order to 

upgrade and improve systems that aim to allocate and schedule 

tasks to resources. However, the resolution of the scheduling 

problems becomes quickly difficult considering the space, 

temporal and economic constraints taken into account.   

Nowadays, the maritime transport becomes one of the 

fundamental pillars of the global economy.  In general, the 

taken decisions in a maritime port are related to planning and 

control and are time-dependent.  We distinguish three decision 

levels:  strategic, tactical and operational level.   

- The strategic level: it concerns the long-term decisions and 

focus on the design and the terminal infrastructure. These 

decisions are planned for several years.   

- The tactical level: it is related to the decisions in means and 

short term (few days to few months) and concerns the 

organization of the terminal operations such as resources 

allocation, human resources management, allocation policy 

and internal transport. 

- The operational level: it is related to the instantaneous 

decisions of each day aiming to achieve the various tactical 

level tasks [1]. 

The berth allocation problem is attached to several decision 

levels, especially the tactical and operational ones.   

  The complexity of management of a container terminal and 

the mentioned decisions levels, introduce several optimization 

problems where each problem is focused on one or more 

operation in the terminal. These problems are classified among 

the transport and scheduling problems, such as the vehicle 

routing problem and the assignment problems which are 

largely studied in the literature.  We can classify these 

problems in four main classes:  

* Ships planning:   

        - Berth Allocation Problem (BAP).   

        - Quay Crane Allocation Problem (QCAP).   

        - Container Stowage Problem (CSP).   

* Transport on the quay:   

       - Course cranes scheduling.   

* Management of the handling equipment:   

        - Scheduling of the handling equipment.   

        - Maintenance of the handling equipment.   

 * Yard Management:  

        - Container Stacking Problem.   

        - Empty containers repositioning.   

Our works aim to resolve the problem of allocating berths to 

ships. The BAP is regarded as a parallel machines scheduling 

problem.  A task and a machine can be considered as a ship 

and a berth, respectively. To resolve this problem, we adopted 

a heuristic approach based on the multi-agents negotiation, the 

contract net protocol, the WorstFit technique of arrangement 

and LPT policy. Indeed, the agent approaches are recently 

emerged as powerful technologies that are able to contribute in 
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the design and the development of complex systems.  The 

capability of these approaches to solve complex problems is 

based on the agent’s capacities, their autonomy and their 

adaptability to complete common goals by interacting 

together.    

B. Objectives 

The objective of our work is to study the scheduling problem 

on identical parallel machines. We aim to schedule n jobs on m 

identical parallel machines. The criterion we want to minimize 

is the makespan (Cmax). 

C. Organization of paper 

This paper is composed of five parts:  The first part presents a 

global view on the studied problem.  We introduce this 

problem by presenting the context, the aimed objectives and 

the various levels and decision problems involved in the 

container terminal operations. In the second part, we present 

the dynamic and discrete berth allocation problem and its state 

of the art. We present also scheduling problems, its resolution 

methods, the P||Cmax problem and its state of the art. The third 

part presents the suggested solution. We present the resolution 

approach and its description. The fourth part presents the 

experimentation, the development environment and the 

obtained numerical results.  Finally, we present a conclusion 

which summarizes our contribution, highlights some 

observations and prospects to improve our results. 

II. State of the Art 

A. State of the art on the BAP 

A berth is a location, usually with a well defined length in the 

quay where a ship can land to perform handling operations 

(loading / unloading containers). Berths are generally 

equipped with specific installations to facilitate the containers 

handling. We note that berths are at the heart of the purpose of 

our work, we are interested in optimizing the allocation of 

berths to a set of waiting ships in the port knowing that berths 

represents a key factor to have an efficient port service. This 

problem consists in assigning ships to quay sections in the 

container terminal, respecting a planning time.  Indeed, as 

indicated in figure 1, inspired from Cordeau and Laporte 

works [4], a set of ships arrive to the container terminal in 

different but known in advance dates.  It is necessary to 

determine precise schedules for the entry of these ships (a 

scheduling problem) and a berth (an assignment problem) 

where handling operations will take place. Several restrictions 

and constraints must be taken into account such as quay length 

and containers loading / unloading time. Due to these 

restrictions, berths become critical resources that imply 

waiting times to have access to them. However, profitability 

and productivity of the port requires the reduction of the 

waiting time and berthing costs. This very practical problem 

has been the subject of several studies in the operational 

research according to various approaches.   

Indeed, the berths to ships allowance is the first planning 

operation in the container terminal, it is a major factor in 

measuring performance and efficiency of a terminal. 

Researches related to this problem are justified primarily by 

the ships accosting time passed in the quay. This time is 

considered by the ship-owners as a lost profit for each hour in 

late passed in the quay, since this time is a period without 

generation of revenues [3]. The principal decision to take 

during accosting is the choice of “where” and “when” ships 

must accost.  Thus, this planning determines position and time 

for each vessel arrival in order to minimize the total accosting 

time, knowing the estimated arrival time and the operations 

duration which represent the temporal aspect of the problem.   

 

   

 

 

 

 

 

 

 

 

 

Figure 1. Ships accosting 

This problem can be modeled in different ways: according 

to the vessel arrival and the service time (a static or a dynamic 

problem) or according to the accosting space (a discrete or a 

continuous problem). This is due to the various assumptions 

and constraints involved in the modeling of the problem. This 

problem is known as dynamic (DBAP) if the vessel assignment 

process starts whereas some ships did not arrive yet at the port 

but we know their arrival times. The problem is considered 

static (SBAP) if all ships to serve are in the port before the 

assignment beginning and before berths becomes available [4]. 

It is known as a discrete problem if the quay is represented as a 

finite set of berths where each berth is located by points or 

segments having the same length and each berth can serve one 

ship at a given time.  It is known as a continuous problem if we 

assume a variable ships length, a variable cranes capacity or 

when we authorize the ships accosting anywhere along the 

quay. In our works, we focus on a significant variant of this 

problem which is the dynamic and discrete one, noted 

DDBAP.   

Several studies and researches treat the dynamic and 

discrete case problem.  Among others we mention those of 

Imai and al. [5] in 2001, where they introduce the static and the 

dynamic problem by proposing a heuristic approach based on 

a lagrangian relaxation and aiming the minimization of the 

total service time which is composed of a waiting time and a 

handling one.  In the same year, Nishimura and al. [6] 

proposed a genetic Algorithm based on a set of heuristics to 

solve this problem having the same objectives and including a 

set of physical accosting restrictions such as the water depth. 

Also, Guan and Cheung [7] presented in 2004 a set of 

heuristics to minimize the total weighted flow time by 

considering that flow time is composed of a waiting and a 

processing time whereas the weighted time reflects the 

importance of ships.  Cordeau and al. [8] introduced an 

algorithm based on the tabu search strategy to solve this 

problem, but only the small sizes of the problem were solved.   

Recently, in 2008, Imai et al. [9] proposed a genetic algorithm 

based on heuristics to minimize the total service time. In the 

same year, Hansen and al. [10] introduced a new allocation 

policy to resolve the DDBAP, which is based on a variable 

neighborhood search heuristic. In 2009, Golias et al. [11] 

formulate the DDBAP as a multi-objective combinatorial 
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optimization problem and they developed a genetic algorithm 

to solve it. Also, Theofanis and al. [12] solve the same 

multi-objective combinatorial optimization problem by using 

an alternative of the genetic algorithm proposed by Golias et al. 

In 2012, Mnasri S. and Zidi K. [13] proposed a negotiation 

model based on agents to solve the DDBAP, our works are the 

extension of this paper.     

This problem is related in several other decision problems 

in the container terminal. Mainly the quay crane allocation 

problem (QCAP) [14], the simultaneous optimization of the 

berth assignment and the quay cranes problem (QBAP) [15] 

and the optimization of the container to AIVS assignment 

problem [16]. 

B. State of the art on the scuduling 

Scheduling is a scientific discipline studied since fifties which 

consists in organizing the execution of a set of tasks, taking 

into account temporal constraints (time, sequencing, etc.) and 

other constraints related to the use and the availability of 

required resources. Thus, scheduling concerns the allocation 

in time, of a set of limited resources to tasks. It is a 

decision-making process aiming to optimize one or more 

objectives. These objectives varies according to the treated 

scheduling problem and can be related to the minimization of 

the total tasks execution time (the makespan), the 

minimization of the number of tasks to be carried out after 

their due date, or the minimization of waiting times, etc.  

The scheduling problems belong to the under constraints 

combinative optimization problems. The majority of the 

scheduling problems are NP-Hard. Our problem is classified 

NP-Hard considering the complexity of the accosting 

constraints which include several factors and parameters.  

Even if it is about only one berth, the problem is proved 

NP-Hard by Lenstra and al. [17].  

We model our problem (DDBAP) as a problem of 

scheduling tasks on identical parallel machines in order to 

minimize the makespan.  In the scheduling literature, this 

problem is known as P||Cmax.  Indeed, the parallel machines 

are classified according to their speed.  They are qualified as 

identical if all machines have the same execution speed.   

In 1979, Graham [18] proposes the α / β / γ notation which 

becomes a reference in characterizing the scheduling problems: 

The α field describes the structure of the problem and it is 

divided into two sub fields α1 and α2, α1 references the 

problem nature (Flow Shop,..), and α2 specifies the machines 

number.  The β field describes the types of constraints taken 

into account. The γ field presents the considered objective 

function. Generally, criteria to be optimized depend on the 

products completion dates.  To describe the DDBAP, we 

consider the following values:   

-  Field α1 Value: P:  indicates that machines are parallel and 

identical.   

-  Field β Values:  

- ri           A beginning earliest date ri is associated 

to each task ti. 

- di                  A preferred due expiration date di is 

associated to each task ti. 

 

-No wait           The operations of each specific task 

must be executed without waiting. 

 

-Snsd 

(Rsnd)     

Resources must be prepared before 

and/or after each task execution, 

independently of the tasks sequence. 

- Field γ value: the Cmax which references the makespan.   

Then, our problem will be noted as follow: P| ri di No-wait 

Snsd | Cmax.  

The resolution methods of the scheduling problems are 

related to several scientific disciplines.  Among them, we find 

the operational research where many resolution methods are 

based on it.  We find exact methods like dynamic 

programming and the branch-and-bound. The constructive 

heuristics and greedy algorithms are also part of it, among 

them we find list algorithms and priorities rules. Constructive 

heuristics are iterative methods which generate solutions by 

the addition of elements in each iteration.  Also, there are other 

methods derived from operational research like the local 

search.  The main idea of these methods is to start from a 

realizable solution, and then gradually modify it until a stop 

criterion is satisfied. The subtlety of these methods is based on 

the generation of a close to optimal solution, as well as its 

acceptance rules. As example of the local search methods we 

mention the descent method, the tabu search and the simulated 

annealing. We can also develop metaheuristic methods to 

solve scheduling problems.  Heuristics and metaheuristics are 

considered as approximate methods [19]. Recently, 

multi-agents systems and distributed artificial intelligence 

proved their efficiency in the resolution of the scheduling 

problems.   

In the literature, P||Cmax is treated by several research 

works, we motioned the following works:  In 1996, França and 

al. [20] used a tabu search strategy to solve it. In 2003, 

Antonio Frangioni and Emiliano Necciari [21] proposed 

approximations and heuristics based on the multi-exchange 

neighborhood for the P||Cmax.   Also, DellAmico and Martello 

[22] in 2005 proposed an exact method based on a Branch and 

Bound algorithm.  In 2008, Iori and Martello [23] solved this 

problem using a scatter search algorithms.  In 2010, Adriana 

c.f. Alvim [24] proposed hybrid heuristics combined with a 

tabu search strategy. In what follows, we compare our results 

with those of DellAmico and Martello and those of Adriana 

C.F. Alvim. 

III. The Suggested Solution 

A. The resolution approach  

To solve the DDBAP, we use a distributed approach 

combining two concepts:  Agent and Heuristics. Indeed, 

multi-agent systems constitute a non recent research field. 

However, they represent a very active research field. Indeed, it 

is a distributed system composed of a set of intelligent agents 

which are autonomous, able to interact and to be organized. 

Thus, these systems give agents the possibility to cooperate 

and to coordinate their goals and action plans in order to 

satisfy and solve a specific problem.   The modeling of the 

based on agents systems consists on the establishment of a 

multi agent organization to satisfy aimed objectives. Indeed, it 

is about classifying and combining various tasks and 

equipping the agents with a set of competences (roles and 

knowledge) enabling them to interact according to a 

communication protocol (the Contact Net for example) in 

order to achieve the organization common objective. It is also 

about describing complex agent behaviors which govern its 
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relations with the other agents and the environment. Recently, 

the development of the distributed control theory allowed 

several researches to apply the multi-agents system theory to 

solve the container terminal problems. Indeed, a multi-agent 

system can reflect in a realistic and generally effective way, the 

complex relations between the system actors and the way in 

which they are organized. The multi-agent system can also 

provide a solution which is acceptable by the majority of 

implied actors in the system. This can be very useful since, in 

many practical situations, the problem data are not completely 

known from the beginning.   

The problem of the scalability is also less constraining when 

we use the agent approach.  We note that the system 

environment is complex, highly dynamic and decomposed into 

subtasks. This imply taking into account the distributed 

structure as well as the data flow circulating between the 

various actors of the system (ships, berths, Etc) which are 

largely influencing the ships scheduling and the satisfaction of 

all requests in a dynamic context. Also, the multi-agent 

approach gives the possibility to explore a dimension search 

space which is, in most cases, not searchable via the traditional 

resolution methods. Thus, we obtain a global solution which is 

incrementally built starting from the partial solutions provided 

by the agents. Indeed, each agent searches a locally feasible 

solution and negotiates its neighbors in order to make it 

coherent.   

The negotiation is a mechanism of coordination and 

interaction between agents which allows improving the 

agreements about the points of view and the action plans after 

the exchange of interesting information [25]. This mechanism 

includes a protocol to organize negotiations, a communication 

language and a decision-making process which allows to each 

agent to decide his position, his choices and his orientations. 

The negotiation concerns the distributed resolution of the 

conflicts and the decision-making. After the negotiation, an 

offer is accepted, refined, criticized, or refused. The 

negotiation comprises several models. These models are either 

theoretical such as the vote and the game theory models, or 

data-processing models such as the knowledge based 

negotiation, the negotiation led by constraints or the Contract 

Net of FIPA. The Contract Net is one of the multi-agents 

approaches which aim to resolve the tasks allowance problems. 

This protocol establishes a contract between a supervisor 

called manager and a set of contractor agents. Indeed, as 

schematized in figure 2, the manager decomposes tasks into 

several subtasks and diffuses each subtask on all contractor 

agents.  Contractors receive the task announcement and 

propose their offers to the manager. These offers reflect their 

capacities to realize the desired task. The manager gathers the 

proposals and allocates the task to the agent which gives the 

best proposal. Then they exchange informations until the task 

achievement.  In extreme cases, there will be, the manager 

cancels the contract and the task execution.   

 
Figure 2. The contract net phases 

1)  Inter-ships negotiations 

In addition to the negotiation via the contract net protocol, our 

system comprises a negotiation mechanism between the ships 

agents. Indeed, we aim to respect the constraint which implies 

the dynamicity of the berth allocation problem. This constraint 

supposes that scheduling can starts while there are some ships 

which are not yet present physically in the port but their arrival 

times are known in advance.  Then, we must be sure that the 

ship planning (its handling date) will not precede its arrival 

date.  In this case, an inter-ships negotiation mechanism starts 

if a ship handling date precedes its arrival date.  Indeed, the 

concerned ship tries to delay its handling date to the profit of 

the next ship in the planning without violating its preferred due 

date. This ship communicates with other ships to delay its 

handling date until respecting the previous indicated 

constraint.   

2)  Used Heuristics 

To solve the DDBAP, we use two heuristics, the first one is 

LPT policy and the second is the WorstFit arrangement 

technique.   

The longest processing time (LPT) is a known policy which 

allocates tasks to machines in a descending order of their 

processing times.  This algorithm is the most current used 

heuristic in the literature for the parallel machines planning 

and the makespan minimization problem which is our 

objective.  Indeed, the interest of the tasks is measured by the 

number of containers to handle.  We assign to each vessel, a 

berth according to the number of containers to handle, more 

worked containers, more incomes.  In our case, the ships 

execution times are supposed to be known in advance, because 

ships call the terminal before landing in order to reserve a 

berth.   

Several heuristics was proposed to quickly find possible 

solutions to the problem of arrangement of a set of objects 

having different widths in a set of boxes. As an example, we 

mention the First-FIT (FF) heuristic which sequentially places 

objects on the first appropriate box.  The Best-FIT (BF) which 

also, sequentially traverses objects but it place them in the box 

which has the smallest sufficient available capacity and the 

Worst-FIT (WF) which always places objects sequentially in 

the box having the greatest sufficient available capacity. 

Indeed, the Worst-FIT technique is used to resolve the 

problem of arranging objects and to inserting tasks in empty 

locations in order to minimize their makespan. This heuristic is 

also used to solve another traditional problem which is the 

Bin-Packing Problem. This problem consists in arranging 

objects in the minimum possible number of identical boxes. 

These two problems are very dependent.  Basically, they 
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correspond to the same decision problem but they have 

different objectives to minimize.  Figure 3 illustrates the 

passage from an arrangement to a scheduling according to the 

Worst-Fit technique.   

 

 
Figure 3. Transforming an arrangement to a scheduling 

      Among the used techniques to represent a scheduling, we 

have the Gantt diagram which constitutes the simplest mean 

and the more used one to represent a scheduling. Indeed, this 

diagram enables us to represent the affectation of tasks (ships) 

to machines (berths) and to show the machines time 

occupation, the treatment sequences on each machine and the 

completion dates.  The figure 4 presents an accosting plan in 

time and space.   

 
Figure 4.  A Space-time representation of an accosting 

B. Detailed description of our approach 

After presenting the problem, we will deduce its modeling. 

1) Notations and decisions variables   

We describe the scheduling problem using the following 

notation and decision variables characterizing the system:  

I       the number of machines.   

T      the number of tasks.   

i       (= 1...I)  B   the set of berths (set of machines).  

j       (= 1...T)  V   the set of ships  (set of tasks).  

k       (= 1..T)  O  the set of the service order.   

Si   time when berth I becomes empty and can be included in 

the planning.   

Aj     arrival time of the ship j.  

Cij    handling time passed by the ship j in the berth i.  

Xijk  1 if the ship j is served as the Kth ship in the berth i, 0 else.   

PK   subset of O knowing that P K =  {p|p < K   O }. 

Wi   subset of ships knowing that Aj ≥Si. 
Yijk free time (of the berth i) between the departure of the 

(k-1)th ship and the arrival of the kth ship when the ship j 

is served as a kth ship.  : 

2) Objective function 

We aim to resolve the P| ri  di no-wait Snsd | Cmax.  Our 

objective to minimize is the makespan of the tasks (Cmax).  As 

a result, we have the following objective function:   

Minimizing      

 {((T-k+1)Cij +Si-Aj}Xijk +  (T-k+1)Yijk
i B j V k O i B j V k O     

        

                                        (1) 

3) Constraints and restrictions taken into account 

To specify our problem, we detail several constraints which 

express restrictions on the values that the decision variables 

can take.  Among the considered constraints we have:  

(a) Time of changing ships 

It is often supposed in the literature that times needed to moor 

or to leave the berth are negligible.  In our problem, we 

suppose a constant time between the times of service of two 

consecutive ships using the same berth.  

(b) The non-preemption:  

The preemption consists in dividing tasks into a set of subtasks 

to allow the parallel execution of independent tasks. We 

suppose that pre-emption is not allowed since the migration of 

ships and its displacement between berths generates additional 

mooring times which are often more important than the saved 

time. This means that once the ship is moored, it will remain 

until handling operations are finished.   

(c) Initial and final cranes assignment 

This constraint specifies which cranes are affected, their starting and 

final positions. Considering the nature of the treated problem 

(P||Cmax), we release this constraint and suppose that all berths have 

the same quay crane handling time.   

 

Thus, the constraints of the problem (inspired from the 

dynamic formulation of Imai and Nishimura, [8]) can be 

formulated as follows:   

 

            

Xijk = 1 for any j V 
i B k O 


              

    (2) 

                       

            

  1   i ,
j V

Xijk B k O


                               (3) 

   

ik ikm ikm ijk j i ijk (C  X  + Y )+Y - (A -S ) X >= 0
ki V k P 

          

for any i , ,iB j W k O  
    

               (4)
 

      

     
Yijk  0 for any  i , ,B j V k O          

          (5)
 

 

      
Xijk  {0,1}  for any i , ,B j V k O   

                 
(6)                                   

 

The constraints (2), (3) and (6) concern the positioning of 

the ship. The constraint (4) ensures that serving ships should 

begin only after their arrivals. We suppose that Cij, Si and Aj 

have integer values. Also, Yijk may have an integer value that 

indicates the priority report between the ship arrival and its 

service. The constraint (5) indicates a free time of the berth i 

between the departure of the (k-1)th ship and the arrival of the 

kth ship j. To explain that the service is carried out after the 

vessel arrival, Yijk is defined simply as the difference between 

the beginning of the service for the ship j and the departure of 

its immediate predecessor. 

C. Detailed modeling of the proposed multi agent approach 

1)  Proposed multi agent architecture 
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We propose, in figure 5, the following architecture which 

comprises three types of agents in addition to the containers as 

objects:  the mediator agent (scheduler), the berth agent, the 

vessel agent.    

 

 
Figure 5.  The proposed multi agent architecture 

In what follows, we present the characteristics of each agent: 

its roles, knowledge and behaviors which are appropriated to 

their tasks. 

(a) Roles and knowledge of the agents: 

- Scheduler Agent: It is the agent which manages the negotiation 

process after the creation, starting from the graphical interface, of the 

berth and vessel agents. Thus, its role is to order ships in a queue 

according to a well-defined policy, to plan the berth allowance, the 

containers loading/unloading and to provide the scheduling results. 

It knows the total number of ships, the total number of berths, the 

identifier of each vessel agent and the identifier of the corresponding 

berth agent and its characteristics and the routing order of the ships in 

the built queue. It knows also the characteristics of each berth agent 

(its identifier, its length in meters, its depth, its availability, its 

current load, etc) and the characteristics of each ship (its identifier, 

length, depth, number of containers to be charged or discharged, 

estimated arrival date, preferred due expiration date, etc). 

- Berth Agent: It is the agent which represents the quay location, its 

role is to receive accosting requests launched by ships; it is also able 

to calculate their offers corresponding to their capabilities to receive 

the concerned ship and to send these offers to ships. It knows its 

characteristics (identifier, length, depth, availability, current load in 

containers...) and characteristics of the ship agent asking for 

accosting (identifier, length, depth, number of containers to be 

charged or discharged, estimated arrival date, preferred due 

expiration date, etc).  

- Ship Agent: It is the agent which represents the ship, its role is to 

search the suitable quay location to accost. It launches an accosting 

request to all berths and then it chooses the suitable berth. It knows 

the total number of berths, the identifier of each berth agent and its 

characteristics, the berth proposals following its requests, the 

identifier of the selected berth agent and its characteristics. It knows 

also its characteristics (identifier, length, depth, number of 

containers to be charged or discharged, estimated arrival date, 

preferred due expiration date, etc).  

(b) Agent behaviors 

Agents select machines on which these tasks should be treated. 

The way in which agents select tasks constitutes their 

behaviors. A behavior is an event handler which works as a 

method which describes how an agent reacts to an event. 

Formally, it is an appropriate change of state. In jade, 

behaviors are classes and the code of the event handler is 

placed in a method called action. Behaviors are either 

primitive or compound. Primitive behaviors are either simple, 

cyclic or with only one execution. Compound behaviors are 

either parallel, or sequential. The principal behaviors of our 

agents are: 
- Scheduler agent behaviors: It creates new berth agents and vessel 

agents following the user action started from the interface, it initially 

orders vessels in a queue, gives them useful data to find a berth, 

displays results in a table, in a graphic area and in a text area 

containing the obtained scheduling details. It can also authenticate 

and provide information on itself. 

- Berth agent behaviors: It receive the demand of each ship, 

evaluates this request using the  behavior “evaluateAction()”, 

prepare an offer “behavior:  prepareResponse()”, sends this 

offer, manages notifications “behavior: 

prepareResultsNotification()”,manages the proposals 

acceptance or rejection “behaviors: hundleRejectProposal() 

and handleAllResponses()”, receives the acceptance of the 

offer from the vessel, executes the requested task and sends a 

feedback indicating the termination of the task execution. 

- Vessel agent behaviors: it sends requests to the agents using 

the behavior: “call for proposal (cfp)”, manages the berth 

answers using the following behaviors: 

“hundleAllResponces(), hundlePropose(), hundleRefuse() and 

hundleFailure()”. Also, it accepts or refuses each request 

“accept-proposal / reject-proposal” and it provides the offers 

results to the berth agents using the behavior:  “hundleInform():  

inform(done), failure or cancel”.   

 

2) OMASE Modeling 

To model our multi-agent system, we use O-MaSE (Open 

Multi-Agent Systems Engineering): a methodology which 

follows the oriented object principle to design the multi-agent 

systems. Its purpose is to build an organizational society of 

agents based on the meta-model of the organization [26].   

Each agent plays a specific role to achieve a goal according to 

its capacities. O-MaSE is the extension of MaSE. It takes into 

account the advantages of MaSE and those of the organization 

engineering. It also allows modeling a complex and opened 

multi-agent system. Also, because of its simple use and being 

recognized by various research works, we propose to follow 

this methodology and its associated platform (AgentTool) to 

conceive our System.   

The development process of this methodology treats the 

following phases: analysis, design and implementation:   

* The phase of analysis: it consists in:   

- Identifying goals: a goal is considered as the objective of the 

system. Goals are structured and organized according to their 

order of importance.   

- Determining the desired system behaviors and describing the 

exchanged messages.   

- Defining roles: each goal is transformed into a role. This role 

will be played by an agent.   

* The phase of design:  it consists in:   

- Creating agent classes: the agent classes are identified 

starting from roles.   

 - Building conversations: we define protocols between agents.   

 - Assembling agent classes: we create internal agent classes 

according to the selected architectural model (BDI or other).   

 - Defining the system structure: it is presented by the 

deployment diagrams of OMASE.   
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* The phase of implementation:  

AgentTools facilitates the development of the multi-agents 

applications. It allows checking, generating code and reusing 

components. However, we do not limit ourselves to this 

automatic code generation, but we will implement our own 

system. This realization is one of our contributions and its 

results will be more detailed in the following section.  

 

     This methodology, as described in figure 6, contains 

several models like: Goals, Roles, Agents, Protocols and Plans. 

This figure presents also the development steps of these 

diagrams. 

 

 
Figure 6.  Phases of the OMASE methodology 

IV. Experimentation 

A. Detailed Design and development Environment: 

To conceive our multi-agent system, we use AgentTool. To 

develop it, we use the Jade platform. AgentTool is a graphic 

environment which is developed in java to help developers to 

analyze, conceive and implement multi-agents systems. It is 

conceived to support the MASE methodology. At3, the last 

version of AgentTool, supports O-MaSE and provides the 

possibility to check the coherence between models and 

generating automatically the code according to the agent 

model. This environment, incorporated on the eclipse platform 

provides eight models. These models support analysis, design, 

and the execution of the multi-agent system according to the 

O-MaSE methodology. Also it provides the capacity to check 

and adapt processes to the required needs. Besides, aT3 

provides a checking framework which helps designers to 

maintain coherence between the OMaSE models. Figure 7 

illustrates the GUI of the agentTools III. 

 

 
 

Figure 7.  The AgentTools GUI 

The JADE platform (Java Agent DEvelopment Framework) is 

an agent development environment fully implemented in the 

JAVA language. It facilitates the development of a multi-agent 

system that satisfies the specifications of FIPA (Foundation 

for Intelligent Physical Agent). Jade provides a set of classes 

which define the behaviors of each agent behaviors. Agents 

use the FIPA ACL language to communicate. An editor is 

available to manage agents. Jade uses a set of services to 

ensure the conformity to the FIPA standards. Among these 

services we mention the following ones: the name service, the 

yellow pages service, the transported messages and the 

analyzing service; and the FIPA interactions protocol library. 

Communication is realized by a set of exchanged messages. 

FIPA ACL is used to represent messages. The agent platform 

can be distributed on many machines. On each machine, only a 

java virtual machine JVM is executed. Basically, each JVM is 

an agent container which provides an environment to execute 

agents. Figure 8 illustrates the Jade GUI.   

 

 
Figure 8.  The Jade GUI 

B. Numerical results 

To validate our work, we compare our results to other works 

like those of Ethel Mokotoff, [28], and Mauro Dell' Amico and 

Martello in 1995 [27] and 2005 [22]. Along this comparison, 

we used a Pentium 600 MHz to be close to the environnment 

of Mookotoff and Dell' Amico. We treated the same problem 

as Ethel Mokotoff and Mauro Dell' Amico (P||Cmax) and we 

tested our work on the same platform and the same values but 

we take into account of a set of additional constraints (P| ri di  

No-wait Snsd | Cmax).  This makes the problem more 

difficult to solve but does not increase its complexity. 

1) Obtained results for the E.Mokotoff and DellAmico 

instances 

(a) Obtained results for the small size instances of E.Mokotoff and 

DellAmico 

In this section, we compare our results to those of E.Mokotof 

and Dell' Amico for the small size instances (5   n   15 and 

3   m   5); n is the number of tasks (vessels in our case) 

and m is the number of machines (berths). Indeed, to solve the 

P||Cmax problem, Dell' Amico and Martello [27] proposed an 

algorithm and its implementation in C, this algorithm is based 

on the branch and bound method with a criterion of dominance 

and a calculation of a lower and higher bound. We used three 

classes of random instances which uniformly generate values 

of execution times Pi (in seconds) of n tasks in the following 

three intervals [1,100], [10,100] and [50,100]. For E.Mokotoff 

[28], he tested his work (based on the branch and bound 

method) using a computer equipped by a Celeron 434 MHz 

with the same three classes of instances generated with the 

same way. 
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To test our system, we take an execution time which is the 

average of 10 execution times. To represent the beginning 

earliest date ri, we use a parameter Q chosen in the set {1,5}, ri 

is generated uniformly in the interval [0, Q*n], n is the vessel 

number. The preferred due expiration date di is generated 

automatically when creating each vessel agent. Table 1 

compares our results compared to those of Mokotoff and Dell' 

Amico. 

For small size instances, obtained values clearly 

demonstrate the advantage of our work compared to those of 

Mokotoff. However, they show the advantage the DellAmico 

and al. works on ours. The following histograms (figure 9, 

figure 10 and figure 11) show the obtained results starting 

from samples taken from table 1 representing the small    size  

Table 1. Obtained Results for the Small Size Instances 

 Pi  [1,100] Pi  [10,100] Pi  [50,100] 

M N Mokotoff Dell’Amico 
Our 

System 
Mokotoff Dell’Amico 

Our 

System 
Mokotoff Dell’Amico 

Our 

System 

3 5 0.06 0.000005 0.000006 0.02 0.000007 0.000008 0.06 0.000010 0.0000012 

3 6 0.01 0.000010 0.000011 0.02 0.000014 0.000008 0.06 0.000007 - 

3 7 0.09 0.000024 0.000011 0.08 0.000038 0.000007 0.10 0.000019 - 

3 8 0.10 0.000036 0.000008 0.09 0.000076 0.000008 0.12 0.000131 0.000009 

3 9 0.05 0.000040 0.000009 0.12 0.000101 0.000009 0.11 0.000073 - 

3 10 0.06 0.000100 - 0.12 0.000210 - 0.22 0.000278 - 

3 11 0.14 0.000113 - 0.22 0.000355 - 0.54 0.000256 - 

3 12 0.08 0.000157 0.000010 0.12 0.000112 0.000011 0.38 0.000361 - 

3 13 0.14 0.000125 0.000011 0.19 0.000009 0.000012 1.38 0.000618 - 

3 14 0.08 0.000012 - 0.15 0.000093 - 1.48 0.000590 - 

3 15 0.22 0.000014 0.000015 0.19 0.000014 0.000015 0.27 0.000011 0.000017 

4 5 0.01 0.00002 0.000021 0.01 0.000001 0.000028 0.01 0.000001 - 

4 6 0.03 0.00003 0.000031 0.01 0.000003 0.000038 0.07 0.000008 - 

4 7 0.02 0.000018 0.000033 0.02 0.000022 0.000044 0.05 0.000028 - 

4 8 0.06 0.000021 0.000036 0.08 0.000017 0.000046 0.12 0.000021 0.000052 

4 9 0.04 0.000076 0.000066 0.12 0.000102 0.000056 0.25 0.000047 - 

4 10 0.03 0.000043 0.000076 0.30 0.000088 0.000089 0.74 0.0000373 - 

4 11 0.09 0.000215 0.000282 0.90 0.000297 0.000282 0.99 0.001426 - 

4 12 0.57 0.000210 0.000373 1.17 0.000406 0.000452 0.95 0.000448 0.000440 

4 13 2.98 0.000537 0.000415 5.00 0.000841 0.000462 15.74 0.000921 - 

4 14 0.62 0.000300 0.000484 0.14 0.000403 0.000468 39.84 0.000608 - 

4 15 0.57 0.000290 0.000474 0.49 0.000256 0.000481 47.06 0.001546  

5 6 0.01 0.000002 0.000013 0.02 0.000001 0.000016 0.01 0.000001 0.0000178 

5 7 0.01 0.000008 0.000016 0.01 0.000011 0.000015 0.03 0.000010 - 

5 8 0.01 0.000013 - 0.02 0.000021 - 0.04 0.000028 - 

5 9 0.02 0.000022 0.000023 0.08 0.000017 - 0.02 0.000030 0.0000342 

5 10 0.05 0.000034 0.000036 0.06 0.000072 0.000032 0.06 0.000029 - 

5 11 0.37 0.000092 0.000028 0.30 0.000133 0.000043 3.61 0.000231 - 

5 12 0.09 0.000126 0.00022 1.81 0.000324 0.000363 17.96 0.000471 - 

5 13 1.68 0.000183 0.00029 5.06 0.000359 0.000378 74.23 0.000930 0.00062 

5 14 5.39 0.000201 0.00025 30.98 0.000414 0.00052 50.04 0.000926 0.00064 

5 15 2.85 0.000247 0.00033 0.29 0.000925 0.00102 52.73 0.001007 - 

 

 

instances of the three types of classes. We simply compare our 

results to those of Dell'Amico since, according to the table 1 

 and [22], Dell'Amico and al. results are better than those of 

Mokotoff for all instances. Missing entries, represented by (-), 

indicate that we have not tested these cases. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.  Small size instances results for the first class 
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Figure 10.  Small size instances results for the second class 

 

Figure 11.  Small size instances results for the third class 

(b)  Obtained results for the big size instances of E.Mokotoff and 

DellAmico 

Table 2 shows the results of same works using a larger size of 

instances (20  n 1000 and 3m 100). The execution 

time values of the tasks are taken in the interval [1,100]. 

The figure12 shows the obtained results for the big size 

instances for several values of m and n taken from the 

preceding table (table 2). 

 

 
Figure 12.  Results of the big size instance

Table 2. Obtained results for the big size instances 

 Mokotoff Dell’Amico Our system 

M N Time (in 

seconds) 

Non 

resolved 

instances 

Time (in 

seconds) 

Non 

resolved 

instances 

Time (in 

seconds) 

Non 

resolved 

instances 

3 20 0.12 0 0.000014 0 0.000015 0 

3 50 0.10 0 0.000017 0 0.000013 0 

3 100 0.22 0 0.000013 0 0.0000124 0 

3 200 0.12 0 0.000020 0 0.000014 0 

5 20 0.57 0 0.000753 0 0.00042 0 

5 50 0.35 0 0.000021 0 0.000019 0 

5 100 0.67 0 0.000026 0 0.000022 0 

5 200 1.23 0 0.000034 0 0.000027 0 

15 20 0.01 0 0.000004 0 0.000025 0 

15 50 864.47 2 0.000062 0 0.000039 0 

15 100 329.66 0 0.000059 0 0.000037 0 

15 200 348.79 0 0.000104 0 0.000041 0 

100 200 2042.08 0 0.058836 0 0.00078 0 

 

(c) Interpretation of our results and those of E.Mokotoff and 

DellAmico    

Indeed, for the values taken from the three classes of instances 

(large and small sizes), we note that our values are better than 

those of E Mokotoff. For the Dell'Amico values, only for the 

instances of the first and second class of the small size, the 

execution time of Dell' Amico and al. is generally better than 

ours.  This can be explained as follow: Dell' Amico and al. 

used an exact method which solves the problem faster than our 

method for the small size instances because our heuristic 

method requires a procedure of communication and exchange 

of messages between agents which take the majority of the 

execution time in this case. The founded result using the same 

benchmarks shows the effectiveness of our system. This 

mainly affects the execution time of the big size instances. 

This is another major contribution of our work since we could 

show, from the numerical results, that multi-agent negotiation 

combined with heuristics can be used as an approach to solve 

complex problems (and not as a distribution tool), to 

significantly reduce the search space dimension and to provide 

satisfactory and close to optimal solutions.   
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2) Obtained results for the Adriana Alvim and Celso Ribeiro 

instances: 

(a) Comparing the execution time 

To solve the P||Cmax, Adriana c.f. Alvim and Celso C Ribeiro 

[24] used an hybrid heuristic approach which includes a tabu 

search strategy. They make the analogy with the BinPacking 

problem which consists in finding the minimum necessary 

number of bins m. Every bin has a capacity C to pack a set of 

articles. The sum of the articles weights in each bin should not 

exceed its capacity. This problem is closely related to our 

problem. They share the same decision problem, which consist 

in determining if all the items/tasks can be assigned to m 

bins/machines with a capacity/makespan equal to C. Indeed, 

their approach is composed of a series of procedures; each one 

has a specific step of pretreatment. But they share the same set 

of processes composed of the following phases: construction, 

redistribution and improvement. Tabu search is at the heart of 

the improvement phase, achieving the function of the 

reconstitution of the feasible solutions every time the 

construction phase produces a solution which violates the 

problem constraints. A feasible solution for the BP is a 

solution where the makespan does not exceed the capacity of 

the concerned bin. To test their work, the authors used four 

groups of instances for the BP problem and two groups of 

instances for the P||Cmax problem. We are interesting in the 

P||Cmax problem: they used two groups of instances and they 

considered three possible intervals for the execution times Pi: 

[1, 100], [1, 1000] and [1, 10000]. The number of machines m 

is in {5, 10, and 25} and the number of tasks n is in {10, 50, 

100, 500, and 1000}. These two groups of instances differ in 

the distribution of the execution time: either uniform or 

non-uniform. According to them, their code is better, in time, 

than the Branch & Bound of Dell'Amico and Martello. Table 3 

compares our results to those of Adriana for the tested 

instances. 

Table 3. Comparison of results 

 

 

 

 

 

 

 

 

(b) Comparing the makespan 

We also compare, in table 4, the founded makespans to those 

of the Adriana’s instances.  
 

 

Table 4. Obtained Execution Times Compared to the Adriana and Celso Instances 

 

 

 

 

 

 

 
 

 
*H_CNP   : makespan of our system: CNP + Heuristics. 
*LPT         : makespan obtained by the LPT heuristic. 
*C(B&B)  : makespan obtained by the Brunch and Bound  algorithm. 
*LB_Adr  : lower bound found by the HI PCmax Adriana heuristic. 
*Cmax_Adr: makespan obtained by the HI PCmax heuristic of 

Adriana. 

(c) Interpretations of the obtained results and those of Adriana 

Alvim and Celso 

Thus, on the level of the execution times, our results are better 

than those of DellAmico and Martello and those of Adriana. 

Concerning the makespan, our results are similar to those of 

Adriana for the majority of the tested instances. These results, 

as mentioned in our previous works ([29] and [30]), are better 

than those founded by the LPT heuristic and generally better 

than those founded by the B&B algorithm.  

V.  Conclusion and Perspectives 

The execution of parallel tasks generates a set of algorithmic 

and optimization problems. Due to their complexity, these 

problems cannot be resolved in a reasonable time. 

Our work deals about the problem of allocating berths to 

vessels (the Berth Allocation Problem) in its dynamic and 

discrete variant noted DDBAP. To resolve this problem, we 

adopted a heuristic approach and an agent architecture which 

allows the interaction between intelligent agents to reach a 

common goal, which is the obtaining of a feasible and close to 

optimal solution. We use the OMaSE methodology and the 

tool agentTools, we provide a system modeling by establishing 

the OMaSE models. We developed our model of negotiation 

using the Jade platform. In conclusion, we obtained a good 

result that shows the effectiveness of the distributed heuristic 

method that combines the two concepts of ‘Agent’ and 

‘Heuristics’. Possible extensions of our work are numerous. 

We propose the following few prospects to improve the 

performance of our work: 

- Taking into account other constraints such as precedence 

which affects the flow of container exchange between vessels 

and the integration of metaheuristics which proved their 

effectiveness in solving transport problems such as genetic 

algorithms and simulated annealing. We can also integrate 

hybrid methods. 

– Improving our approach to treat other extensions of the BAP 

and adopting our model to solve the Quay Crane Scheduling 

Problem simultaneously with the Berth Allocation Problem. 

This problem which combines the two previous problems is 

called the Berth and Quay Crane Allocation Problem.   

– Extending our system to support other real parameters and 

factors to treat unforeseen ones and to support disturbances 

(empty containers, delay and change of weather and arrival 

times, disaster management). 

Pi M N Our system Adriana, 2010 

1-1000 5 100 0.000022 0,01 

1-10000 5 10 0.000036 0,22 

1-10000 5 50 0.000019 0,15 

1-10000 5 100 0.000022 0,01 

 

Pi N M H_CNP* LPT* C(B&B)* LB_Adr* Cmax_ Adr* 

1-1000 5 100 10237 10247 10237 10237 10237 

1-10000 5 10 11385 11575 11575 11385 11575 

1-10000 5 50 55528 55747 55530 55528 55528 

1-10000 5 100 96926 96960 96926 96926 96926 
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