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Abstract— This paper presents an accurate and efficient model 

to compute the delay metric of on chip high speed VLSI 

interconnects. The proposed delay metric assumption is based 

on RC interconnect model. Interconnect has become a 

dominant factor in deep sub micrometer (DSM) integrated 

circuit (IC) technology. The Elmore delay has been the metric 

of choice for the performance driven design applications. But 

the accuracy of the Elmore delay is insufficient. For 

optimization like physical synthesis and static timing analysis, 

efficient interconnect delay computation is critical. In this 

paper, a delay metric using RC-int and RC-out has been 

formulated which computes the delay at any arbitrary point on 

the waveform and at any point along the interconnect line. The 

proposed model is based on the first three moments of the 

impulse response. Two pole RC model is developed based on the 

first, second and third moments’ effect onto the delay 

calculation for interconnect lines. This two pole approach 

permits the pre-characterization of the interconnect delay. The 

empirical D3M metric is shown to be a special case one present 

here, the accuracy of delay metric is insufficient, the metric also 

provides an expression for impulse response, we absorbs 

significant improvement of at least 50% accuracy delay 

estimate when compared to the Elmore delay and even through 

our estimate are as ease to compute as Elmore delay, the metric 

has proven to be accurate to with in 50% of HSPICE 

simulation.  The proposed metric also provides an expression 

for impulse response. The SPICE simulation results justify the 

accuracy and efficiency of the proposed model. . The novelty of 

the work is that it does not require any look-up table for the 

calculation of the delay. 

Keywords - Delay Modelling, On-Chip Interconnect, RC Line, 

Step Input, VLSI. 

  

I. Introduction  

The developments in VLSI process technology using 

nanometres-scale components focus on the speed estimations 

from transistors and gates to interconnect. As CMOS 

technologies shift towards deep sub-micron (DSM) 

technologies, interconnect networks are becoming 

increasingly dominant in terms of total path delay [1]. The 

model order reduction techniques [2] compute the dominant 

poles and the corresponding residues by matching the 

moments of the circuit impulse response. The design 

optimization of digital integrated circuits requires millions of 

delay calculations. During early designing the design 

optimization stages are efficient and implemented easily, in 

that time high accuracy is not required, therefore delay 

metrics, which are closed from delay equations that are very 

efficient and easy to implement. The response of the 

interconnect network is then represented as the sum of 

exponential functions. The Elmore delay [3] approximation 

is the most widely used delay model in the performance 

driven design of RC interconnect. However, Elmore delay 

can not accurately estimate the delay for RC interconnects 

lines [4].  

    The Elmore constant, or first moment of the impulse 

response has been, for a long time, the standard delay metric 

for interconnect performance driven design optimization. 

The mean value of delay is taken as an approximation to the 

time at which the output voltage of the interconnect v(t), for 

a step input, reaches 50% of its final value, 

dtttvD )(
0




  

With decreasing rise times and minimum feature sizes, 

Elmore delay ceases to be the accurate metric for interconnect 

analysis and synthesis. It provides ovary pessimistic delay 

measure for RC circuit with general finite ramp inputs. Since 

interconnect resistance is higher, its shielding effect [5] is 

more important. Elmore delay, neglecting the resistance 

shielding, does not capture the correct sensitive, which is very 

crucial. This can lead to unacceptably large errors due to the 

fact that it tends to neglect the screening of the downstream 

capacitance of the interconnect by its resistance [6-7].  Alpert 

et al. [6] proposed two RC delay metrics which they claimed 

to be virtually as simple and as fast as the Elmore metric. 

Interconnect delay computation is critical tasks which may be 

executed millions of time during floor planning, placement 

and routing [8]. So efficient, highly accurate and closed from 

delay and slew metrics are very important for IC design. As 

such efficiency [11] of interconnect analysis is critical in a 

statistical timing flow, the advances in technology that result 

in scaled, multi level interconnect may address the wire 

ability problem but in the process  create problem with signal 
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integrity and interconnect delay. A number of interconnect 

delay metrics are proposed recently with varying accuracy [9-

15]. Most of these are based on the assumption that matching 

the first three moment of the impulse response result in a 

circuit that can describe the electrical behaviour of the linear 

RC line which models the interconnects accurately. In [9], the 

authors have proposed an explicit RC circuit delay model 

using the first three moments. In [10], the delay metric is 

based on comparing the impulse response to the h-gamma 

distribution. In [11], the gamma distribution is selected to 

model the normalized homogenous portion of the step 

response. While the Elmore delay is provably an upper bound 

for the 50% delay for large class of RC tree response, the 

tightness of the bound varies significantly from one node to 

create higher order (2-pole) moment matching models from 

which the delay can be approximated explicitly. The result is 

a delay metric in terms of the first three moment of the 

impulse response which provides accuracy similar to two pole 

models. These metrics are more accurate, thereby prohibiting 

the use of higher order Krylov space methods [12]. 

Asymptotic Waveform Evaluation (AWE) [13] is proposed 

with partial pade capability that produces provably stable 

two-pole models using the moments at the driven point and 

load end. In [14], a closed form expression for delay using 

first three circuit moments of the impulse response has been 

presented based on double pole approximation. In current 

mode signalling technique [15], an equivalent lumped 

element model can predict the step response of an 

interconnect line for both current and voltage mode 

signalling. The mean of an RC circuit can be calculated in a 

recursive way, and the resulting equivalent Elmore delay is in 

a simple closed form. However, what we really want to find is 

not the mean but the median of the distribution since it 

corresponds to the 50% delay point. Alpert et al. [6] proposed 

two RC delay metrics which they claimed to be virtually as 

simple and as fast as the Elmore metric. But significantly 

more accurate .One of these was the D3M (delay via three 

moment) metric after some process, they found that the 

following form of D3M consistently correlated best with the 

actual delay 

2

2

2

1

3
2

2

1 IN

M

M
M

M
MD












 

Elmore delay is proven to be the upper bound of the 

propagation delay [7]. In many cases, especially for the near 

end nodes, there is significant difference between the mean 

and the median of the impulse response waveform. 

Asymptotic Waveform Evaluation (AWE) [13], can approach 

towards HSPICE like accuracy by computing and matching 

higher order moments of the impulse response, but AWE 

does not provides any closed form formula, in particular it 

involves finding a solution of non linear equations. There are 

other different interconnect delay models proposed which are 

suitable for different frequency of operations [16-19].  

In the following sections, we will explain the derivation of 

D3M metric at any arbitrary point on the interconnect line, 

with an accuracy of 50% compared to HSPICE simulation. 

And this paper next step (2) is devoted to the derivation of the 

metric for delays measured at the output interconnect.  

The delay model proposed in this paper is suitable for 

moderate frequency range and hence RC interconnect is 

considered to derive the delay metric. 

This paper is organized as follows: Section II discusses 

the proposed delay model for on-chip interconnects lines. 

Section III presents and discusses the simulation results. 

Finally section IV concludes the paper. 

II. Proposed Delay Model 

The proposed work is divided in two sub-sections. In the first 

sub-section, an analytical delay model for RC VLSI 

interconnect is proposed for the output node out; whereas, in 

the second sub-section, the analytical model is extended for 

an arbitrary point int in the interconnect. 

A. Delay metric at 'out' node of the RC interconnect line  

Let us consider the RC circuit as shown in Figure 1, which is 

a two stage RC model for estimation of the output response 

in an interconnect line. 

 

 
Figure 1. Two Stage RC Circuit 

Kirchhoff’s Voltage Law is applied in loop 1 and loop 2, 

respectively. For loop 1, 
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For loop 2, 0
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Solving (2) and (3) yields, 
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Substituting the value of 
2i  form (5) in (4) results in (6), 
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Let h(t) be the time domain impulse response of the RC 

circuit. The corresponding transfer function )(sh is 

expressed in term of RC interconnects’ parameters, 

   1

1
)(

22111

2

2121 


scrrcrsccrr
sh   (7) 

Consider a transfer function )(sh of the RC circuit, and 

assume that a sufficient number of its moments is calculated 

form the circuit, 
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The first three moments of the transfer function can be 

expressed easily in term of resistance and capacitances, 

  221111 crrcrm     (9) 

   2

2211121212 crrcrccrrm     (10) 

      2

221112211221113 2  crrcrcrcrcrrcrm     (11) 

The transfer function )(sh  can be expressed in term of its 

moments [13], 
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Hence, its poles in terms of first three moments are sufficient 

to describe the transfer function. The stable two poles (S2P) 

approximation consists of transfer function h(s) and the poles 

are found form the driving point moments; hence its poles 

are given as: 
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Two extreme cases are discussed here regarding the 

relationships between two poles, i.e. dominant and 

coincident poles. 

 

1) Dominant pole 

Here both poles are real and 
1p >>

2p ; also it can describe the 

50% delay, 











1

3
21 2

m

m
mm   (14) 

Therefore, D3M delay metric proposed in [6] is,    
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The model proposed in [6] is referred to as the scaled Elmore 

delay in term of first three moments. Therefore, in this 

particular case (15) can also be expressed as, 
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This shows that Delay Metric with three moments (D3M) is 

a special case. 

 

2) Coincident pole 

In this condition both poles are equal i.e. 
1p = 2p . This 

occurs when the discriminator in (13) is zero. Therefore, 

from (13) we have, 
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Hence the double pole p of the transfer function can be 

expressed in term of first three moments as, 
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So, the transfer function of the RC circuit for step response at 

node out is, 
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Taking inverse Laplace transform of (19), we get, 

  ptpt

out pteetv 1   (20) 

Here, unlike [6], an equivalent pole is not approximated. 

Rather, in this derivation, desired delay would be computed 

from the behaviour of the waveform described by (20). To 

compute the equivalent single pole peq that yields the same 

50% delay for the circuit, we solve (20) using (15) with p 

replaced by peq, 
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Solving (21) yields the value of
p

peq , 
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Hence, solving (22), we get 50% delay for coincident poles 

and is given by, 
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Therefore, comparing (16) and (23) one gets that 50% delay 

for these two extreme cases differs by a factor. Therefore, 

one can assume that in general case, for an arbitrary ratio 

1
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1
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m
mm   and, there is a factor  5.0  such that the 50% 

delay point of the step response of a two pole circuit can be 

expressed in the form given in (24), 
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where   5.0571.0 5.0    (25) 
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Equation (24) represents the required expression for 50% 

delay for the output node. A similar procedure can be 
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adopted to compute the 70% delay point at the output of the 

circuit in Figure 1. This leads to the following result: 
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Similarly the 70% delay point of the step response of a 2-

pole circuit for the dominant poles can be expressed in the 

form as given in (28), 
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Same procedure can be used for the case of coincident poles; 

hence 70% delay for the coincident poles is given by, 
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Comparing (28) and (29), 70% delay of the step response, 
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Therefore, 
  57.0663.0 7.0   (31) 

Note that, in comparison to the 50% delay metric, the error 

resulting from using some average value based on (31) for 

7.0dt is greater.   

B. Derivation of the delay metric at an arbitrary point in 

RC interconnect line 

As seen in the previous sub section, the delay metric given 

by (24) and (27) is quite stable delay metric for nodes at the 

far end of an interconnect line i.e., the associated correction 

factor δ does not span for a large value; therefore, using an 

average value (average of a practical range of 
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discussed in [6], such a metric is not suitable for near end 

nodes. Let us consider the RC circuit in figure 1.which can 

be two stage RC model for the out response of an 

interconnect line. Hence we calculated the transfer function 

at the intermediate node int of the circuit.  

Now KVL is applied in the circuit model shown in Figure 

1.For loop 1, 
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For loop 2, 
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Solving (33) and (34), we get, 
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Substituting the value of i1 from (36) in (35) yields, 
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Thus, the transfer function at the intermediate node is, 
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The transfer function can be expressed as a ratio of two 

polynomials. Assume that a sufficient number of moments 

are calculated from the circuit, 
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The first three moments of the transfer function can be 

expressed easily in term of resistance and capacitance values, 
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From the above three equations, the coefficients of 

denominator polynomials may be expressed as, 
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refers to as two poles approximate with explicit moment 

matching The transfer function of the circuit can be 

expressed in term of its moments [8] as, 
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Since the first three moments are sufficient to describe the 

Transfer function of such a circuit, a delay metric that takes 

only these three moments into account should be sufficient. 

The poles of this circuit are then: 
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As also done in the previous sub section, let us examine the 

two extreme cases in the relationship between the two poles, 

 

1) Dominant pole  

We know that in case of dominant pole P1>>P2 (both are real 

and negative), 
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Therefore its 50% delay for a step input can be given as, 
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or, 
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This equation is the D3M delay metric [4]. 

 

2) Coincident pole 

This is similar to the previous section where P1=P2. This 

occurs when the discriminator in (41) is nil. Therefore, from 

(41) we have, 
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Hence, the doubles pole p of the transfer function can be 

expressed in term of first three moments as, 
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In this case, the step response of the circuit at any arbitrary 

point is, 
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And taking inverse Laplace transform of (47), we get, 
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Here, unlike [6], we do not consider an equivalent pole that 

captures, approximately, the behaviour of the entire 

waveform described by (48), from which the desired delay 

point would be computed. The reason is that a two time 

constant behaviour can be approximated using a single pole 

unless one of the times constant is negligible with respect to 

the other. To compute the equivalent single pole peq that 

yields the same 50% delay for the circuit, we solve (48) 

using (43) with p replaced by peq, 
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Hence, a numerical solution of this equation yields the 

following value of the ratio p/peq, 
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 Hence, solving this equation, we get the 50% delay for 

coincident pole and is given by,         
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Therefore, comparing (45) and (51), we get that 50% for 

these two extreme cases differs by a factor. Therefore one 

can assume that in general case, there is a factor  5.0  such 

that the 50% delay point of the step response of a 2- pole 

circuit can be expressed in the form, 
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 where                        
  577.0570.0 5.0    (53) 

Equation (52) represents the required expression for 50% 

delay for the arbitrary node. 

Following the similar steps, we get the 70% delay point at 

that output node of the RC interconnect, 
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Therefore, in case of step response 70% delay for the 

dominant poles is given as, 
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 Same procedure can be used for the case of coincident pole; 

hence, 70% delay for the coincident poles is given by, 
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Comparing (54) and (55), 70% delay of the step response is, 
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Therefore,                         
  600.00596.0 7.0     (58) 

It can be observed that in comparison to the 50% delay 

metric, the error resulting from using some average value 

based on (58) for 7.0dt is greater.  

Again, we study two extreme cases corresponding to the 

relative importance of the zero at node int in Figure 1, from 

which a general delay model is deduced for higher order RC 

interconnect models. It is assumed, without loss of 

generality, that the position of the zero in the frequency is 

determined with respect to R2. 

 

1. Low frequency zero: This corresponds to a very large 

value of R2 which causes the zero to move down in 

frequency partially cancelling the effect of the poles. This 

also means that R2 “screens” a large portion of C2 from node 

int. In the case where R2→ ∞ , the 50% delay reduce to, 
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Here, the index int indicates that the moments are those 

associated with the node of the same name, the second index 

(for independent) means that only the circuit upstream of 

node int is taken into account, i.e. the circuit section (R1C1). 

 

2.   High frequency zero: This corresponds to the situation 

where R2 is very small. In this case where R2→0, the 
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screening effect is nil and the delay at node int coincides to 

the delay at the far end node (out); thus we can write; 
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Now note that the expression of the delay in (49) can be 

written in term of the delay expressed in (59).Considering 

the benchmark circuit shown in Figure 1, 
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For higher order RC interconnect circuit, the time constant 

R1C2 constant can be shown to be the sum of the all 

capacitance downstream of the node of interest (int), Cdint 

multiplied by the discharge resistive path (to the source) 

upstream of int, rUint. Therefore, a more general expression 

(for higher order circuit) is, 
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For the general case where a portion of Cdint is screened, the 

delay at an intermediate node can be (intuitively) expressed; 

where B is a parameter that quantifies the screening effect 

although the derivation of B is beyond the scope of this 

paper, one can easily develop an intuitive understanding of 

such a parameter. A classical approach consists of simply 

taking B as an exponential function of the ratio of the first 

moments at node int and out. The problem with this 

approach is that first moments are inherently inappropriate to 

model signal transitions on which the screening effect is 

strongly dependent [7],  therefore a formulation of B that 

take in to account the second and third moments is more 

appropriate, in our case  B is expressed is follow; 
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III. Experimental Results  

The comparative result of the proposed models for output 

node as well as arbitrary node int with SPICE delay and 

Elmore delay for the different values of C is illustrated in 

Tables 1-4. From the tables, it is evident that the proposed 

delay models for both cases results in an error of as low as 

10% when compared with that of SPICE simulations. 

Figures 2-4 show the graphical comparisons in among 

SPICE 50 % delay, Equivalent Elmore 50 % delay and the 

proposed 50 % delay model for the different values of load 

capacitances. From the graphs we can analyse that the 

behaviour of the proposed delay model for 50% is similar to 

that of the SPICE and Equivalent Elmore delay models. 

From the figures it is observed that as the value of the load 

capacitance increased, the delay in the nets also increases 

and it is least in the low frequency for the arbitrary point 

node int on the interconnect line. 

Graphical comparisons of the % error in between SPICE 

with Elmore model and SPICE with proposed model for 50 

% delay model for different values of load capacitances are 

drawn in Figures 5-7. From all the figures we can analyse 

that the proposed delay model for 50 % threshold shows 

better accuracy and efficiency that equivalent Elmore delay. 

From the simulation results we can also analyse that our 

proposed model has less error comparable to equivalent 

Elmore model and it is found to be within 10 % of the SPICE 

values. 

 

C 

(pF) 

SPICE 

50 % 

Delay 

for 

int 

Tint 

(μs) 

Equivalent 

Elmore 

model 

50 % 

Delay 

% 

Error 

Proposed 

model 

for 

50 % 

delay 

% 

Error 

240 35 31 11.42 37 5.74 

290 41 38 7.31 44 7.31 

340 52 47 9.61 54 3.84 

390 61 54 11.4 67 9.83 

440 68 61 10.29 72 5.88 

Table 1. Comparison between Elmore and the proposed 

delay with spice result for low frequency for 'int' node. 
 

 

C 

(pF) 

SPICE 

50 % 

Delay 

for int 

Tint 

(μs) 

Equivalent 

Elmore 

model 

50 % 

Delay 

% 

Error 

Proposed 

model 

for 

50 % 

delay 

% 

Error 

240 56 45 19.6 44 3.57 

290 68 54 20.58 58 7.34 

340 75 63 16.01 66 8.01 

390 91 76 16.48 79 3.29 

440 98 81 17.34 82 3.06 

Table 2. Comparison Between Elmore and the Proposed 

Delay with Spice Result For High Frequency For 'int' Node. 

 

 

C 

(pF) 

SPICE 

50 % 

Delay 

for int 

Tint 

(μs) 

Equivalent 

Elmore 

model 

50 % 

Delay 

% 

Error 

Proposed 

model 

for 

50 % 

delay 

% 

Error 

240 43 39 9.31 54 2.32 

290 57 51 10.52 63 1.75 

340 63 57 9.52 69 4.17 

390 74 63 14.84 88 6.75 

440 79 70 11.39 95 3.79 

Table 3. Comparison Between Elmore and the Proposed 

Delay with Spice Result for Dominant for Out Node. 
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Figure 2. Comparison between Elmore and the Proposed 

Delay with SPICE result for Low Frequency for Int Node 

 

Figure 3. Comparison between Elmore and the Proposed 

Delay with SPICE result for High Frequency for Int Node 
 

 

Figure 4. Comparison between Elmore and the Proposed 

Delay with SPICE result for Dominant Pole for Out Node 

 
Figure 5. Comparison of % Errors between Elmore and the 

Proposed Delay with SPICE result for Low Frequency for Int 

Node 

 

Figure 6. Comparison of % Errors between Elmore and the 

Proposed Delay with SPICE result for High Frequency for 

Int Node 
 

 

Figure 7. Comparison of % Error between Elmore and the 

Proposed Delay with SPICE result for Dominant Pole for 

Out Node 

 

Figure 8 shows two RC response waveforms and their 

SPM (Single Pole) and DPM (Double Pole) approximations. 

It is clear from Figure 2 that in the cases of single pole and 

double pole, waveforms deviate significantly from a one-pole 
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exponential; however, in both the cases the 10-90% delay is 

modelled accurately by SPM and 50% delay is modelled well 

by DPM. Though neither SPM nor DPM match the complete 

output waveform shape, together they can capture the key 

delay points needed for timing analysis. It may also seem that 

approximating step response with one pole can cause a large 

error in delay estimation because the actual response can 

deviate significantly from a single pole exponential 

approximation. 

 

Figure 8. Comparison in SPICE, Single Pole Delay and 

Double Pole Delay Approximation 

 

IV. Conclusion  

Interconnect now dominates a number of design metrics. 

Various interconnect models have been presented over the 

last several decades. In this work, an accurate delay metric for 

resistive interconnect is presented, that computes the delay at 

any arbitrary point on the waveform and at any point along 

the interconnect. It is based on the first three moments of the 

impulse response. Two pole RC model is developed based on 

first, second and third moment effect for the delay estimation 

for interconnect lines. Proposed model is applicable to any 

type of interconnect line as this approach is not based on the 

analogy of the impulse response to a particular Probability 

Distribution Function (PDF). The SPICE simulation justifies 

the efficacy of the proposed delay modelling approach. 
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