
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2014) pp. 227 - 236
© MIR Labs, www.mirlabs.net/ijcisim/index.html

 Dynamic Publishers, Inc., USA

Domain Ontology Based Class Diagram Generation

From Functional Requirements

Jyothilakshmi M S and Philip Samuel

Information Technology, School of Engineering
Cochin University of Science and Technology

Kochi-22 Kerala India
jyothi.shaji@gmail.com; philips@cusat.ac.in

Abstract —Domain ontology formally represents knowledge as a

set of concepts within a domain, and the relationships among
those concepts. This paper proposes a method to generate class

diagram from functional requirement specification which is

written in natural language by using Domain ontology and
Natural language processing techniques. Major steps in this

method are identification of nouns and verbs from requirement
specification statements and linking them with the ontology.

From the ontology we get information about core concepts and
relationships among those concepts. Thus domain ontology

helps in the identification of classes, attributes and relationships

for the particular domain for which the system is to be
developed.
Keywords— Domain Ontology, Natural language processing,
UML Class Diagram.

I. INTRODUCTION

Requirements are generally expressed in the form of

natural language statements [1]. Analysis and Design Process
covers two major phases of software development life cycle.
The two phases are often overlapped due to the recursive

nature of requirements. Process usually starts with getting
know-how of customer business processes and existing
systems, understanding customer needs, expectations,

constraints and elicitation of requirements. Requirements
conflicts are removed, and issues and concerns are addressed
to develop a clear understanding of customer requirements.
These requirements are then used to define the functionality

of proposed system and to determine what the systems are
intended to do. System functionality and architecture is
documented, and after reviewing internally, communicated to

customer for the purpose of validation. This document then
gets mature as a result of customer feedback and serves as the
basis for further development. For manual requirement

analysis and design process, Software engineers spent lot of
time.

A class diagram in the Unified Modeling Language
(UML) is a type of static structure diagram that describes the
structure of a system by showing the system's classes, their

attributes, operations (or methods), and the relationships
among the classes. It is the main building block of object
oriented modeling and design. In the diagram, classes are
represented with boxes which contain three parts. The upper
part holds the name of the class, the middle part contains the
attributes of the class and the bottom part gives the methods
or operations the class can take or undertake. The relationship
among the classes can be association, dependency,
aggregation, generalization and composition. In the design of
a system, a number of classes are identified and grouped
together in a class diagram which helps to determine the
static relations between those objects.

The aim of this paper is to automate the extraction of
class diagrams from functional requirement specification
which is represented in natural language statements and thus
to reduce the problems associated with manual extraction.

In this approach we utilize the benefits of domain
ontology. Ontology is a “formal explicit specification of a
shared conceptualization” [2]. It formally represents
knowledge as a set of concepts with in a domain and may be

used to describe the domain. All the core concepts and their
relationships are represented in the ontology in a formal way
so that we can automate the process of understanding the
domain specific terms. Formal languages used to construct
ontology are known as ontology languages. Web Ontology
Language (OWL) is one the most recent development in
standard ontology language from World Wide Web
Consortium (W3C). In our method ontology is provided in
OWL format. We can identify the classes, attributes and inter

class relationships by comparing with the terms in the
ontology with that of functional requirement specification.
Also ontology helps us to identify certain domain specific
terms which are not explicitly mentioned in the functional
requirements. When ontology cannot identify the concepts or
terms in the natural language statements, we go for some
natural language processing techniques to extract the classes,
attributes and inter class relationships.

Our paper is organized as follows. Section 2 analyzes
previous works on class diagram generation from natural
language requirements. Section 3 is the description of
proposed approach. Section 4 is the conclusion.

mailto:jyothi.shaji@gmail.com
http://en.wikipedia.org/wiki/Domain_of_discourse
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Class_%28computer_science%29

Jyothilakshmi and Samuel

II. RELATED WORKS

Few approaches are already developed for the extraction

of class diagram from natural language requirement
specification. In this section we survey those works.

A. Auto-generation of Class Diagram from Free-text
Functional Specifications and Domain Ontology by
Xiaohua Zhou and Nan Zhou

Zhou and Zhou [3] propose a methodology that uses NLP

and domain ontology. In this method some initial processing
of the natural language requirements is done with the help of
some linguistic patterns. Also in the domain ontology each
concept is provided in some specific format as input and it is
used to refine the result.

The approach applies a NLP-based spider model to search

classes of interest, that is, they identify core classes of the
domain as starting point, and further find classes that are
related with the identified ones. The major components of the
approach are described below.

Domain Ontology serves as domain knowledge to improve
the performance of conceptual modeling.

Candidate Class Identification module outputs Preliminary
Candidates and Refined Candidates, which serve as input of
spider model. The part of speech (POS) tagger and sentence
parser produce preliminary candidates. Further, word sense
disambiguation technique and semantic network are
employed to produce refined candidates, which are
semantically related to the concepts defined in the ontology.

Relationship Identification module is the most important
component of the spider model. It uses linkage distance to
identify all concept pairs with strong semantic association
within a sentence. Then assigns different weight to each
concept pair to indicate how strong the connection is
according to the constituents the concepts serve as in the
sentence.

Attribute Identification module distinguishes attributes
from classes. After two concepts are found to be strong
associated to each other, then whether the concepts stand for
a class or an attribute of a class is identified.

Naming Relationship module applies linguistic patterns to
find aggregation relationship and generalization relationship.
It uses numeric relationship understanding technique to
distinguish one-to-one association p, one-to-many
association, and many-to-many association.

Parallel Structure uses the feature of English sentence

structure to help elicit more attributes of a class, more child
classes of a super class, and more aggregation part of a class.

Throughout this method NLP techniques are
applied. Part-of-speech (POS) tagger and sentence parser are
used to produce preliminary class candidates while word
sense disambiguation (WSD) and semantic network are
employed to refine preliminary candidates. Linkage distance
produced by Link Grammar Parser is used to find concept
pairs within strong semantic association within a sentence.
Different weights are assigned to each concept pair according
to the linguistic patterns the concept pair belongs to.

Linguistics patterns are used to evidence class-attribute
relationship, aggregation relationship, and generalization
relationship, and distinguish three types of association
relationships. Parallel structure serves as a clue to find more
attributes of a class, more child classes of a super class, and
more parts of a composite class.

Secondly, this approach well integrates domain ontology

with class generation for the first time. The domain ontology
contains important or core domain knowledge. The ontology
feeds the system important classes and their attributes.
However this method needs a set of linguistic pattern as
input.

B. Class diagram extraction from textual requirements using
Natural language processing (NLP) techniques by Mohd
Ibrahim, Rodina Ahmad

Mohd Ibrahim, Rodina Ahmad [4] proposes a
methodology that also uses NLP and domain ontology. The
workflow of this method is as follows. From the requirements
document stop words are identified and stored in list. With
the help of taggers sentences are tagged and thus nouns, noun
phrases and verbs are identified. Then by applying RACE
stemming algorithm the root form of each word is find out
and stored. Now by applying Class Identification Rules,
Attribute Identification Rules and Relationship Identification
Rules the components are identified. The rules are given
below.

1) Class Identification Rules:

C-Rule1: If a concept is occurred only one time in the
document and its frequency is less than 2 %, then ignore as
class.
C-Rule2: If a concept is related to the design elements then
ignore as class. Examples: “application, system, data,
computer, etc…”

228

Domain Ontology Based Class Diagram Generation From Functional Requirements

C-Rule3: If a concept is related to Location name, People
name, then ignore as a class. Examples: “John, Ali, London,
etc…”
C-Rule4: If a concept is found in the high level of hyponyms
tree, this indicates that the concept is general and can be
replaced by a specific concept, then ignore as class.
Examples: “user, object, etc.”
C-Rule5: If a concept is an attribute, then ignore as a class.
Examples: “name, address, number”
C-Rule6: If a concept does not satisfy any of the previous
rules, then it’s most likely a class.
C-Rule7: If a concept is noun phrase (Noun+Noun), if the
second noun is an attribute then the first Noun is a class. The
second noun is an attribute of that class. Examples:
“Customer Name” or “Book ISBN”
C-Rule8: if the ontology (if-used) contains information about
the concept such as relationships, attributes, then that concept
is a class.

2) Attribute Identification Rules:

A-Rule1: If a concept is noun phrase (Noun+Noun)
including the underscore mark “_” between the two nouns,
then the first noun is a class and the second is an attribute of
that class. Examples “customer_name”, “departure_date”.
A-Rule2: If a concept can has one value, then it’s an
attribute. Examples:”name, date, ID, address”. Based on A-
Rule2, we collected and stored a predefined list including the
most popular attributes to be used as a reference in RACE
system.

3) Relationship Identification Rules:

R-Rule1: For each concept if {hypernyms_list} contains a
concept (CT2) which have a hypernyms (HM) which is
lexically equal to CT, then CT2 “is a kind of“CT. Then save
result as Generalization relationship.
R-Rule2: If the concept is verb (VB), then by looking to its
position in the document, if we can find a sentence having
(CT1 - VB – CT2) where CT1 and CT2 are classes, then
(VB) is an Association relationship.
R-Rule3: If the concept is verb (VB) and satisfies R-Rule2,
and the concept is equal to one of the following {"consists
of", "contain", "hold, "include", "divided to", "has part",
"comprise", "carry", "involve", "imply", "embrace"}, then the
relationship that discovered by that concept is Composition
or Aggregation. Example: “Library Contains Books” then the
relationship between “Library” and “Book” is Composition
relationship.
R-Rule4: If the concept is verb (VB) and satisfies R-Rule2,
and the concept is equal to one of the following {"require",
"depends on", "rely on", "based on", "uses", "follows"} , then
the relationship that discovered by that concept is the

Dependency relationship. Example: “Actuator uses sensors
and schedulers to open the door”, then the relationships
between (“Actuator” and “sensor”), (“Actuator” and
“Scheduler”) are the Dependencies relationships.
R-Rule5: Given a sentence in the form CT1 + R1 + CT2 +
“AND”+ CT3 where CT1, CT2, CT3 is a classes, and R1 is a
relationship. Then the system will indicate that the relation
R1 is between the classes (CT1, CT2) and between the
classes (CT1, CT3).
R-Rule6: Given a sentence in the form CT1 + R1 + CT2 +
“AND NOT”+ CT3 where CT1, CT2, CT3 are classes, and
R1 is a relationship. Then the system will indicate that the
relation R1 is only between the classes (CT1, CT2) and not
between the classes (CT1, CT3).

C. From Natural Language to Object Oriented Using the
Natural Language Processing System LOLITA by L. Mich

Mich L. [5] proposes a NLP system, which
generates an object model automatically from natural
language. This approach considers nouns as objects and use
links to find relationships amongst objects. LOLITA system
is built on a large scale Semantic Network (SN) that does not
distinguish between classes, attributes, and objects. This
approach is limited to extract objects and cannot identify
classes

D. A Taxonomic Class Modeling Methodology for Object-
Oriented Analysis by Il-Yeol Song, Kurt Yano, Drexel
University, USA

Song et al. [6] propose a TCM –taxonomic class
modeling methodology for class identification. This method
only identifies the classes from the requirements. Starting
with problem statement, it incorporates the noun analysis,
class categories, English sentence structure rules, checklists,
and other heuristic rules for modeling This methodology help
us to discover three types of classes: (1) classes represented
by nouns in the requirement specifications, (2) classes whose
concepts were represented by verb phrases, and (3) hidden
classes that were not explicitly stated in the problem
statement.

It works as follows. Candidate classes are listed by

extracting nouns from the document. Now with the help of
class elimination rules spurious classes are eliminated.
English Sentence Structure Rules and other Heuristics are
applied and a collection of domain classes are formed. Also
hidden classes are discovered using pre-defined categories.
By analyzing verb phrases and prepositional phrases
transformed classes are identified. Finally, it is reviewed
using domain knowledge. In this methods domain ontology

229

Jyothilakshmi and Samuel

is used to refine the results. The union of all the identified
classes gives the final set of classes in the class diagram.

III. CLASS DIAGRAM EXTRACTION APPROACH

In this section, we discuss our approach of class
diagram extraction in detail. Section A describes the
architectural design of our approach. Section B gives the
detailed algorithm to implement our approach. Section C
gives the general idea about how we are going to implement
the system. Section D is a case study and in Section E a
comparison is made with other approaches. Section F
discusses merits and demerits of our approach.

In our approach, we use domain ontology as a

source for identifying classes, attributes and relationships.
Initially we parse the entire document with the help of
parsers. Then with the help of POS taggers the entire
document is tagged. Thus nouns, noun phrases and verbs are
extracted from the document. Now these extracted nouns and
noun phrases are the main source for class and attribute
identification. Also verbs are the candidate for relationship
and operation identification.

Noun verb noun triplets are generated from the

functional requirements i.e. nouns linked to each verb is
identified. This helps us to identify between which classes the
relationship exists or to which class the attribute belongs.

We use domain ontology to determine whether each
one belongs to class, attribute operation or inter class
relationship. If search in the ontology fails then we further
process the extracted nouns, noun phrases and verbs to
identify classes, attributes, operations and inter class
relationships.

The following table shows a mapping between web

ontology language (a language used to formally represent
ontology) components and UML class diagram components
[8]. The major constructor of OWL are DataProperty, Object
property, Class and Axioms. The corresponding constructor
in UML class diagram is Attribute, Relationship, Class and
Subclass respectively.

TABLE I. MAPPING BETWEEN OWL AND CLASS DIAGRAM

Owl components UML class diagram components

DataProperty Attribute
ObjectProperty Relationships
Class Class
Axioms Subclass, Disjoint etc

If a noun is specified as DataProperty in the
ontology, it links an individual to a data value. So it can be
mapped to an attribute in our class diagram. If a noun is
specified as ObjectProperty in the ontology, it links an
individual to another individual. So it can be mapped to the
relationship between two classes in our class diagram.

A. Architectural design

In this section the architecture model of proposed

methodology is described. The major blocks are SRS Parser,
NVN Triple extractor, OWL Parser, Classes and Attributes
extractor, Relationships and Operations extractor and
Integrator. Each module is described below.

SRS Parser and tagger: It parses and tags the functional
requirement specification statements and identifies all the
verbs and nouns from it. Now nouns serves as a source of
attribute and class identification. Also verbs serve as a source
of operations and relationship identification.

NVN Triple extractor: It generates noun verb noun triplets

from the functional requirements. Thus nouns attached to

each verb are identified. Nouns can be converted to classes or

attributes and verb can be converted to relationships or

operations. So from the NVN triplets, if both the nouns

attached to verb are class then the verb represents a

relationship between those classes. Also if one is a class and

other an attribute then the verb represents an operation of that

class.

Tagged

Domain

Functional

Requirements Functional ontology

 Requirements in OWL

NVN Triple

 OWL Parser

extractor

 Class diagram components extractor

 Classes and Relationship

 attribute extractor

 extractor

 Class diagram

Fig. 1 An architectural design for proposed approach

230

Domain Ontology Based Class Diagram Generation From Functional Requirements

OWL Parser: It parses the OWL ontology. In ontology

domain specific conceptual terms are specified as classes,

inter term relationships are specified as ObjectProperty and

attributes are represented as DataProperty. So with the help

of OWL Parser these are extracted and stored.

Classes and Attributes extractor: It extracts the

components like classes and attributes from the nouns and
noun-phrases. Domain ontology is used in this step.
Attributes are specified as DataProperty in OWL. If domain
ontology does not contain any information about the nouns
and noun phrases under consideration, then the tagged nouns
and noun phrases are again processed. It is described in detail
in the following section.

Relationships and Operations extractor: It identifies the
UML class diagram components like operations and inter
class relationships from the tagged verbs. Here also domain
ontology is used. Relationships are specified as
ObjectProperty in OWL. If the ontology does not contain any
information about the verbs under consideration then
requirements are again processed to understand relationships.
It is described in detail in the following section.

Class diagram: All the components identified from the
previous stages, i.e., classes, attributes, relationships and
operations are integrated and final class diagram is generated.

B. Algorithm for class diagram extraction

Now we discuss the detailed actions to be carried out in

order to extract the class diagram from natural language
requirements. It includes mainly four modules. They are
initial parsing, tagging and NVN triplet extraction of
sentences, parsing of ontology represented in OWL,
identification of classes and attributes and finally
identification of relationships and operations.

First module outputs the tagged SRS document from

which nouns, noun phrases, verbs and NVN triplets can be
identified (Fig.2). Next module is OWL parser which parses
the ontology represented in OWL and thus sub class
relationships, ObjectProperties and DataProperties are
extracted (Fig.3). Now the nouns and noun phrases becomes
the candidate for classes and attributes identification (Fig.4).
Noun-Verb-Noun triplet becomes candidates for relationship
and operation identification (Fig.5). In the last two steps
domain ontology is used to explore the important concepts of
the domain.

1) Algorithm to identify noun, noun phrase and verbs in
 the functional requirement specification:

Pseudo code:
Input: Functional Requirements
Output: Tagged sentences and noun-verb-noun triplets

1. WHILE(end of functional requirement specification reaches)
i) Parse each sentence
ii) Tag parsed sentence with the help of POS taggers.
iii) From the tagged sentences extract nouns, noun phrases and

verbs.
iv) Store nouns to a file called noun.

v) Generate noun-verb-noun triplets for each sentence in the

functional requirements in order to identify to which nouns
each verb is linked.

vi) Store triplets to file triplets.
2. ENDWHILE

Fig. 2 Algorithm to identify noun, noun phrase and verbs

Input to this phase is our natural language functional

requirements. It is parsed with the help of parsers. Now with
the help of parts of speech taggers each sentence is tagged.
From the tagged sentence we can identify nouns, noun
phrases and verbs. Also noun-verb-noun triplets are formed
with help of semantic role labelers. Nouns and noun phrases
are input to second stage which is classes and attribute
extractor. Noun- Verbs-Noun triplets are input to third stage
which is relationships and operations extractor. These nouns
are stored in a file named as nouns and NVN triplets in a file
called triplets.

2) Algorithm to parse the OWL ontology:

Pseudo code:
Input: OWL ontology
Output: Classes, Subclasses, ObjectProperties and

DataProperties.

1) WHILE(entire OWL ontology is processed)
a. Generate a class hierarchy from the ontology which

helps to identify class-subclass relationships.
b. Extract ObjectProperty from the OWL which helps

to identify association relationships
c. Extract DataProperty from the OWL which helps to

identify attributes.
2) ENDWHILE

Fig. 2 Algorithm to parse OWL ontology.

3) Algorithm to identify Classes and attributes:

Pseudo code:
Input: Nouns and noun-phrases from tagged sentences
Output: Classes and Attributes

231

Jyothilakshmi and Samuel

1) WHILE (all the nouns and noun phrases processed)

a) IF noun is present in the parsed ontology file

i) IF it is presented as a class in the file

i) Mark noun as a class.
ii) Extract all the associated information like its attributes

(represented as DataProperty), association relationship
(represented as ObjectProperty) with other classes and
its immediate sub classes.

iii) Store all the extracted information along with its type

in a temporary memory.
ii) ENDIF
iii) IF it is stored as an attribute in the temp

memory
i) Mark noun as an attribute of related class

iv) ENDIF

b) ELSE
i) IF the noun candidate pass all the nine rules given below

i) It is a class

ii) ELSE
i) It can be an attribute or operation as given by the rules.

iii) ENDIF

iv) IF noun has only one property to remember
i) It is a attribute of the related class

v) ELSE
i) It is a class.

vi) ENDIF

vii) IF identification of the noun relies on another noun
i) First noun is an attribute of second which is a class

viii) ENDIF

2) ENDWHILE

Fig. 4 Algorithm to identify Classes and attributes

Process the nouns and noun phrases to extract classes
and attributes. Initially domain ontology is searched. Since
the major concepts of the domain are described in the
ontology, it helps to determine whether the noun represents a
class or an attribute. If it is defined as a class in the ontology,
all the information like its attributes and its relationship with
other classes can be extracted. Thus ontology helps to extract
properties which are not explicitly stated in the functional
requirements. If ontology does not contain any terms that
matches with the noun under consideration, it is a new term
that need to be included in the system to be developed. So
process them separately.

To process the nouns not present in the ontology, we use

the Class Elimination Rules proposed by Song et al. [6] in
TCM –taxonomic class modeling methodology. If the noun is
anyone of the following category, it can be eliminated as a
class. The rules are given below.

TABLE II. RULES TO ELIMINATE NOUN AS A CLASS

Category Description Actions

 If two nouns represent keep the most

Classes Redundant the same abstraction descriptive one
 classes

 The noun is beyond
 the scope of the
 Irrelevant The nouns have problem being
 classes nothing to do with the modeled. So ignore

Classes problem to be solved the noun as class

 The nouns have ill- Ignore the noun as
 Vague defined or too broad class

 classes scope

Implementation The nouns represent an These

constructs implementation-related implementation

 class such as set, string, classes can be added
 or algorithm. at the design or
 implementation

 stages, but not at the
 conceptual level.

Meta-language The noun is used to Ignore the noun as
 describe and explain class

 requirements and the

 system at a very high

 level. Examples are

 systems, information

 etc

Operations The nouns represent Add noun as an
 operations. For operation of the
 example, fine associated class

 calculation is a noun

 form of an operation

 called calculates fine.

Attributes The nouns represent a If the noun has one
 text or a number. For property to remember
 example, name, age, then it is an attribute
 and phone number else it is a class or if
 represent attributes that the identification of
 carry a value. the noun relies on
 another noun the
 dependent noun is an
 attribute of the other
 noun.

Values The nouns represent a Ignore noun as a class
 value itself.

3) Algorithm to identify relationships and operations:

Pseudo code:
Input: Verbs from tagged sentences and NVN triplets
Output: Operations and relationships

1) WHILE all verbs are processed
a)IF verb is present between two classes

i) IF one class is represented as subclass of other class in
 the temporary memory location used in the previous stage
 (a) Verb represents a Generalization relationship

ii) ENDIF

iii) IF one class is represented as an association of
 other class in the temporary memory location used in the
 previous stage

 a) Verb represents an association relationship

iv) ENDIF

v) IF verb is a word with meaning “consist of”

 (a) Verb represents a Composition or Aggregation
 relationship

vi) ENDIF

232

Domain Ontology Based Class Diagram Generation From Functional Requirements

 vii) IF verb is a word with meaning “uses”

 (a) Verb represents a Dependency relationship

 viii) ENDIF

 b) ELSE

 i) IF verb is linked with a single class

 (a) Verb represents an operation of the linked
 class

 ii) ENDIF

 c) ENDIF

2) ENDWHILE

Fig. 5 Algorithm to identify relationships and operations

Process the verbs of the natural language statements, in
order to extract operations and relationships. If verb is
present between two identified classes then it must be
relationship between the two classes. Otherwise it is an
operation of the linked class. In the previous stage the
association and generalization relationship between classes is
stored in a temporary memory. So extract that information
from the temporary memory. If verb is a word with meaning
“consist of” it represents a Composition or Aggregation
relationship. If verb is a word with meaning “uses” it
represents a Dependency relationship

C. Implementation

To implement the above algorithm, the system will

have to use many external programs and resources. Here a
POS tagger and parsers will be used as external resources.
Java native interfaces help us to interface all these recourses
with our main java application. Domain ontology and SRS
document are the input to our system. Fig. 6 illustrates the
components of the implementation

Fig. 6 Implementation of the proposed approach

Functional Requirement Specification: This is the main
input to our application. This document contains end users
requirements specified using natural language statements.

Domain ontology: This is another input to the application. It
formally represents knowledge as a set of concepts within a
domain and may be used to describe the domain [2]. All the
core concepts and their relationships are represented in the
ontology in a formal way which helps to extract the classes,
attributes and relationships between classes from our
functional requirement specification. With the help of
OWLAPI [10] we parse the OWL ontology. The OWL API is
a Java API and reference implementation for creating,
manipulating and serializing OWL ontology. The OWL API
is open source and is available under either the LGPL or
Apache Licenses.

Parser and tagger: Parsing [7] is the process of analyzing a

text, made of a sequence of tokens, to determine its
grammatical structure with respect to a given formal
grammar. Part-of-speech tagging (POS tagging or POST),

also called grammatical tagging or word-category
disambiguation, is the process of marking up a word in a text
(corpus) as corresponding to a particular part of speech,

based on both its definition, as well as its context i.e.
relationship with adjacent and related words in a phrase,
sentence, or paragraph. A simplified form is the

identification of words as nouns, verbs, adjectives, adverbs,
etc. To perform parsing and tagging, number of java based
natural language processing tools are already available. One

of them is OpenNLP. The Apache OpenNLP library is a
machine learning based toolkit for the processing of natural
language text. It supports the most common NLP tasks, such

as tokenization, sentence segmentation, part-of-speech
tagging, named entity extraction, chunking, parsing, and co
reference resolution.

Noun-verb-noun triplet extractor: We need to identify the

nouns attached to each verb in order to map them correctly to
relationships or operations. NVN extraction is done with the
help of semantic role labeler. Semantic role labeling(SRL),
sometimes also called shallow semantic parsing, is a task in
natural language processing consisting of the detection of the
semantic arguments associated with the predicate or verb of
a sentence and their classification into their specific roles.

For SRL a tool called SENNA [11] is used. SENNA is
software distributed under a non-commercial license, which
outputs a host of Natural Language Processing (NLP)
predictions: part-of-speech (POS) tags, chunking (CHK),
name entity recognition (NER), semantic role labeling (SRL)
and syntactic parsing (PSG). SENNA is written in ANSI C,
with about 3500 lines of code

233

http://en.wikipedia.org/wiki/Lexical_analysis#Token
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Formal_grammar
http://en.wikipedia.org/wiki/Grammar
http://en.wikipedia.org/wiki/Lexical_category
http://en.wikipedia.org/wiki/Parts_of_speech
http://en.wikipedia.org/wiki/Lexicography
http://en.wikipedia.org/wiki/Lexicography
http://en.wikipedia.org/wiki/Lexicography
http://en.wikipedia.org/wiki/Phrase
http://en.wikipedia.org/wiki/Sentence_%28linguistics%29
http://en.wikipedia.org/wiki/Sentence_%28linguistics%29
http://en.wikipedia.org/wiki/Sentence_%28linguistics%29
http://en.wikipedia.org/wiki/Paragraph
http://en.wikipedia.org/wiki/Noun
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Machine_learning
http://en.wikipedia.org/wiki/Tokenization
http://en.wikipedia.org/wiki/Tokenization
http://en.wikipedia.org/wiki/Named_entity_recognition
http://en.wikipedia.org/wiki/Coreference
http://en.wikipedia.org/wiki/Coreference
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Natural_language_processing
http://en.wikipedia.org/wiki/Predicate_%28grammar%29
http://en.wikipedia.org/wiki/Verb
http://en.wikipedia.org/wiki/Sentence_%28linguistics%29
http://en.wikipedia.org/wiki/Thematic_relation
http://ml.nec-labs.com/senna/license.html

Jyothilakshmi and Samuel

Class diagram components identification: This is the main
module which implements the entire algorithm specified in
Fig. 2, Fig. 3, Fig. 4 and Fig. 5. Inputs to the module are
Functional Requirement Specification and domain ontology.
The module outputs the major components of the class
diagram.

Class diagram: This is the final class diagram generated. It
includes classes, attributes and relationship between classes
like generalization, association and composition.

C. Case study

Here we utilize an open source ontology ka.owl which

defines the major concepts that comes under area academic
research center.

1) Academic research organization management

requirements

“Employees are head of some projects and students

works at some projects. Employees are uniquely identified by
emp_ID and students by stud_ID. Projects are financed by
university. University consists of a number of departments.
Three types of employees are academic staff, technical staff
and office staff. All academic related activities are handled
by academic staff. Technical staff provides technical support
and office staff carries all non academic activities”

2) A sample class hierarchy from ka.owl ontology

Fig 7 shows the sample hierarchy of knowledge

acquisition ontology.

Knowledge acquisition ontology is free open source ontology
defines concepts from academic research and contributed by
Ian Horrocks . In the ontology event, organization, person,
product, project, publication, and research topic are
represented as major concepts. These may or may not be
relevant with respect to our requirements. The relevant
classes are identified by comparing our requirements in the
functional requirement specification with domain ontology.
Now the associated information of the classes is also
retrieved from the ontology. Thus ontology helps to extract
deepest information about major concepts.

The above snapshot is taken from the tool Protégé.

Protégé is a free, open-source platform that provides a
growing user community with a suite of tools to construct
domain models and knowledge-based applications with
ontology. At its core, Protégé implements a rich set of
knowledge-modeling structures and actions that support the
creation, visualization, and manipulation of ontology in
various representation formats. Protégé can be customized to
provide domain-friendly support for creating knowledge
models and entering data.

With the help of OWLAPI we can parse the knowledge

acquisition ontology. Thus the major conceptual terms, inter
term relationships and attributes of each terms described in
the ontology can be extracted. These are used in the later
stage of class diagram components identification i.e. to
determine whether a term in the requirement belongs to a
class, attribute, relationship or operation.

3) Class diagram generated

From the ontology, we get the information that employee

and students are subclass of person. Also academic staff and
administrative staff are the subclass of employee. Properties
associated with each concept can also be extracted from the
ontology.

From the requirements employee is tagged as noun

which is defined as a core concept in our ontology. So the
entire information associated with the concept “employee”
can be extracted from the ontology. Now from the
requirements student is tagged as a noun. From the ontology
it is clear that both student and employee share a lot of
common attributes. So with respect to the ontology they are
represented a subclass of the class person. In the
requirements it is specified that emp_ID and stud_ID are used
to uniquely identify employee and student respectively. It is
added to the student class and employee class as its attributes.

Fig. 7 Class hierarchy of knowledge acquisition ontology

234

http://www.cs.man.ac.uk/~horrocks/
http://www.cs.man.ac.uk/~horrocks/
http://www.cs.man.ac.uk/~horrocks/

Domain Ontology Based Class Diagram Generation From Functional Requirements

Fig. 8 The class diagram generated

The association relationship “works at” between student
and project can be extracted from ontology. Similarly “head
of” relationship between employee and project can also be
extracted from the ontology. Since university consists of
number of departments, a composition relationship exists
between university and department. The following figure
shows the sample class diagram generated for the above
requirements.

D. Comparison with other approaches

In this section a comparison is made between our methods

with two other methodologies.

A methodology proposed by Zhou and Zhou [3] that uses

both NLP and domain ontology, process the natural language
requirements with the help of some linguistic patterns. Also
domain ontology is provided as input in some specific format
and its scope is too limited. In our approach we are providing
the ontology in the standard ontology representation
language, OWL. The Web Ontology Language (OWL) is a
family of knowledge representation languages for authoring
ontology with some formal semantics.

Mohd Ibrahim, Rodina Ahmad [4] proposes a

methodology that also uses NLP and domain ontology. In this
method, based on the linguistic structure of the sentences, the
natural language statements are processed and finally domain
ontology is used to refine the result. Anyhow

In our approach, domain ontology is used initially to fully
explore the identified classes. Domain ontology gives an idea
about the identified class’s major attributes, operations and
relationships with other classes. If ontology does not contain
any description of the term that needs to be finding out, then
only we go for other natural language level processing to
understand the concept completely.

E. Merits and demerits

The major advantage of our approach is that, we use the

existing ontology which is represented in OWL. As per W3C
standards, OWL is a standard language for representing

ontology. W3C standards [9] define an Open Web Platform
for application development that has the unprecedented
potential to enable developers to build rich interactive
experiences, powered by vast data stores that are available on
any device. Also domain ontology is used in the initial stage
of processing the requirements to understand the major
concept of the particular domain. One drawback of our
approach is that the domain ontology, which is the core of
this method, needs to be available for the particular domain

for which the system is to be developed. But once they are
developed it can be reused for other applications also.

IV CONCLUSION

Domain ontology contains all the core concepts for a

particular domain. So it can be used as a source to identify
major classes, relationships and attributes. In our method we
make use of the benefits supported by domain ontology. Our
ontology is represented in the OWL which is a standard
ontology representation language. If ontology contains
description about the terms in the requirement specification,
then we can retrieve all its attributes and relationship with
other concepts in that domain. If ontology does not contain
the terms, then our natural language statements are further
processed to identify classes, attributes and relationships.

 The major advantage of this method is that, here the
existing ontology is used which are represented in OWL. As
per W3C standards, OWL is a standard language for
representing ontology. W3C standards define an Open Web
Platform for application development that has the
unprecedented potential to enable developers to build rich
interactive experiences, powered by vast data stores that are
available on any device. Also domain ontology is used in the
initial stage of processing the requirements to understand the
major concept of the particular domain.

235

http://en.wikipedia.org/wiki/Knowledge_representation
http://en.wikipedia.org/wiki/Ontology_%28computer_science%29
http://en.wikipedia.org/wiki/Ontology_%28computer_science%29
http://en.wikipedia.org/wiki/Ontology_%28computer_science%29

Jyothilakshmi and Samuel

 Nowadays number of ontology is available online.
So we can reuse the existing ontology if they are already
developed for the required domain. Otherwise we can easily
develop our own OWL ontology with the help of the tool
Protégé. So once developed they can be reused for other
application also.

Major steps of this method are

 Identification of nouns and verbs from requirement
specification statements

 Generation of c with the help of semantic role
labelers. We used a tool called SENNA for
semantic role labeling

 Parsing of the domain ontology. It was done with
OWL API.

 Generate classes and attributes from the list of noun
and noun phrases by linking them with parsed
ontological terms.

 Generate relationships and operations from
relationships and operations.

 So a method for class Model generation from
functional requirement specification is presented. Here we
used domain ontology represented in OWL format to identify
classes, their attribute and inter class relationships. A detailed
algorithm to implement our approach is also presented.

VIII REFERENCES

[1]. Booch. G., Object-Oriented Analysis and Design with

Applications, 2nd Ed., Benjamin Cummings, 1994.
[2]. Gruber, Thomas R., A translation approach to portable

ontology specifications”, Knowledge Acquisition 5 (2):
199–220, (June 1993).

[3]. Xiaohua Zhou and Nan Zhou, Auto-generation of
Class Diagram from Free-text Functional
Specifications and Domain Ontology, Artificial
Intelligence, 2004.

[4]. Mohd Ibrahim, Rodina Ahmad, Class diagram
extraction from textual requirements using Natural
language processing (NLP) techniques, second
international conference on computer research and
development, 2012.

[5]. L. Mich, NL-OOPs: From Natural Language to Object
Oriented Using the Natural Language Processing
System LOLITA., Natural Language Engineering, 2(2,
pp.161-187), 1996.

[6]. Song, Il-Yeol, et al. A Taxonomic Class Modeling
Methodology for Object-Oriented Analysis , In
Information Modeling Methods and Methodologies:
Advanced Topics in Databases Series, Ed, pp. 216-240,
2004.

[7]. Daniel Jurasky, Daniel H. Martin Speech and language
processing: An introduction to natural language
processing, computational linguistics, and speech
recognition.

[8]. Soraya Setti Ahmed and Sidi Mohamed

Benslimane, Reverse Engineering Process for
Extracting Views from Domain Ontology.

[9]. Deborah L. McGuinness and Frank van Harmelen,
OWL Web Ontology Language Overview, Editors,
W3C Recommendation, 2004

[10]. Matthew Horridge, Sean Bechhofer. The OWL API: A
Java API for OWL Ontologies. Semantic Web Journal
2(1), Special Issue on Semantic Web Tools and
Systems, pp. 11-21, 2011.

[11]. R. Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuoglu and P. Kuksa. Natural Language
Processing (Almost) from Scratch, Journal of Machine
Learning Research(JMLR), 2011

236

http://en.wikipedia.org/wiki/Tom_Gruber
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
http://tomgruber.org/writing/ontolingua-kaj-1993.pdf
http://en.wikipedia.org/wiki/Knowledge_Acquisition
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://www.w3.org/TR/2004/REC-owl-features-20040210/
http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf
http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf
http://ronan.collobert.com/pub/matos/2011_nlp_jmlr.pdf

