
International Journal of Computer Information Systems and Industrial Management Applications.

ISSN 2150-7988 Volume 6 (2013) pp. 206 - 216

© MIR Labs, www.mirlabs.net/ijcisim/index.html

Dynamic Publishers, Inc., USA

Automated Testing of Web Services System

Based on OWL-S

Xi Xu
1
 and Shawkat Hasan Shafin

2

1 School of Computer and Communication Engineering, University of Science and Technology Beijing,

Xueyuan Road, Haidian District, Beijing 100083, China

xuxihasan@126.com (corresponding author)

2 School of Computer Science and Engineering, Beijing University of Aeronautics and Astronautics,

Xueyuan Road, Haidian District, Beijing 100191, China

shafin878@yahoo.com

Abstract: As Web Services are more and more mature and

popular, large numbers of practical Web Services are

published on Internet and they are increasingly integrated

together, forming Web Services systems to carry out coherent

tasks. However, the distributed application of Web Services

always involves plenty of standard protocols and various

runtime behaviors. Therefore automated testing of Web

Services becomes more difficult than testing previous

paradigms for software application development. In this paper

we propose a series of applicable automated testing algorithms

and implement an automatic testing prototype system for Web

Services system based on OWL-S (Web Language for Services).

First, deduce abstract test cases from interaction requirement

properties of Web Services system. The properties are included

in OWL-S Requirement Model extended by our research

group. Second, specify test cases according to SWRL (Semantic

Web Rule Language) properties and abstract test cases. In

consideration of the attributes of Fit (Framework for

Integrated Test), specific test case is formatted in tables and

then html document. Finally, generate mutants under AOP

(Aspect-Oriented Programming) technology support, drive

them by specific test cases using improved Fit, and then kill

mutants based on business logic implied in Requirement

Model. We employ two sufficient measurement criteria to

evaluate testing process. Experiments have shown that our

algorithms are feasible and efficient, and the prototype system

not only meets the applied demands but also performs well as

an automated testing tool for Web Services system.

Keywords: automated testing, Web Services system, OWL-S

Requirement Model, specific test case generation, mutant, sufficient

measurement criteria

I. Introduction

Web Services form a new distributed computing paradigm

that has made its way into the standard mechanism and open

platform of the integration of distributed service components.

As this emerging technology is increasingly mature and

popular, more and more practical Web Services are published

on the Internet and used by many consumers. Web Services

from different vendors are always integrated together,

forming Web Services system to carry out a coherent task, but

the Services may contain faults in their implementation and

so they will not behave as consumers’ expected. The

distributed application of Web Services involves plenty of

standard protocols and various runtime behaviors. Therefore

different defects may emerge in all aspects, such as hardware,

software, communication and object management. In other

words, there is a trustworthiness problem between consumers

and providers and how to guarantee the quality of Web

Services system has been a tough problem.

Testing plays a great role in the reliability of target Web

Services system. The growing complexity of system

architecture and application, continual changing of

techniques and rules, etc. have imposed numerous great

challenges of our traditional testing techniques. Thus, testing

Web Services system is more difficult than testing previous

paradigms for software application development. To carry

out a coherent task, Web Services’ applications may be

composed dynamically from different available Services that

may be located in different places and have different quality

attributes. Not only is the source code of the Service

unavailable, but the Service might be hosted on servers at

remote, even competing organizations. In addition,

individual Web Service may contain unknown faults, and it

may experience intruding attempts since any consumer can

bind to a Web Service deployed. Therefore lots of research on

novel testing techniques for Web Services has being done

recent years. Automated testing has become a significant

topic in Web Services testing. The degree of automation will

profoundly influence the efficiency, quality and cost of Web

Services testing. If any fault is found during the testing phase,

Web Services in Web Services system will be re-composed.

The testing is to validate whether the Web Services system

exhibits the desired properties as guaranteed on the

Requirement Model and does not exhibits the undesired

properties.

Lots of research on novel Web Services testing techniques

Automated Testing of Web Services Systems Based on OWL-S 207

has being done recent years [1]–[4]. Existing works [5] and [6]

research on how to assist Web Services testing using SOAP

message. Although, the SOAP message contains the

communication information, it is inadequate for Web

Services system testing. Thus, as shown in Literature [7] and

[8], test technique research based on formal or semi-formal

specification has drawn greater attention. Model checking

using formal methods provides comprehensive and detailed

testing that can validate whether the composite Web Service

software model meets property requirements such as logic,

timing sequence. But the process is more complex because

OWL-S must be used as an intermediate transformation and

the testing is only valid for the programs before

implementation [9]. Runtime verification combined with

model checking is proposed to solve the previous problem of

software testing [10], [11]. Runtime verification does not

need the state space beforehand, but simply tracks state

changes in a running program. It is easily implemented.

Literature [12] presents a mutation-based inter procedural

criterion, named Interface Mutation, suitable for use during

integration testing. A case study to evaluate the proposed

criterion is reported. The results suggest that Interface

Mutation offers a viable test adequacy criterion for use at the

integration level. Traditional mutation testing has strong

ability to debug, and proved to be effective and highly

automated [13]. However, the testing is a white-box testing as

it mutates in source code levels. Thus, it is only adopted when

source code is visible as a unit testing method. Moreover,

enormous mutants cause high testing cost.

This paper presents a series of applicable automated testing

algorithms for ontology-based, event-oriented, real-time

embedded Web Services system, an integration of published

Web services. Instance of CompositeProcess is used to

describe the application flow of the target Web Services

system and SWRL (Semantic Web Rule Language) in

OWL-S is applied to characterize the constraints. FTLTL

(Future Time Linear Temporal Logic) is combined with

Requirement Model to generate test cases for the requirement

properties planned to be verified. As characteristics of Web

Services systems are different from traditional software

systems, mutation testing is adopted in our research after

comprehensive comparison of several methods. We propose a

new mutation testing [14] to solve problems of traditional

mutation testing. In order to execute the mutants

automatically, Fit (Framework for Integrated Test) is also

absorbed into our research.

The remaining section of the paper is organized as follow.

Section II describes the method to generate abstract test cases.

Section III details the output of specific test cases. Section IV

introduces OWL-S based mutation testing. Section V shows

the automatic testing prototype system and some experiment

results based on two sufficient measurement criteria. Finally,

Section VI contains a conclusion and discussion of our work.

II. Abstract Test Case Generation

Testing for Web Services system is driven automatically by

test cases. As each operation of Web Services system driven

by the generated test case is associated with certain

requirement properties, we generate test cases based on

requirement properties to increase automation and efficiency

of the testing process. Requirements properties focus on the

interaction properties of Web Services system. They are

included in Requirement Model of extensional OWL-S.

Requirement Model is a ProcessModel instance in OWL-S

and described by SWRL and FTLTL formulae. In

Requirement Model, CompositeProcess instance describes an

application flow of Web Services system in detail and each

AtomicProcess is corresponding to an operation in WSDL

document of Web Service. Test case generation process is

shown in Fig. 1.

Extended OWL-S Requirement Model

Event Set Collections
(positive, negative)

Test Path Sets
(positive, negative)

Requirement
Properties

Abstract Test Case Sets
(positive, negative)

Event Set Partitioning Test Path Generation Conversion

S
erv

iceM
o
d
el

IO
P

E
&

P
ath

C
o
n
d
itio

n

Output

User Input

Knowledge Layer

Processing Layer

Figure 1. Process of abstract test case generation.

Event Set Partitioning module processes logical formulae

expressing requirement properties and educes two types of

event set collections, positive collection and negative

collection, used to respectively generate positive test paths

and negative test paths. In the collections, every event set

validates at least one formula and all event sets complete

verification of all formulae. In order to obtain test cases

associated with requirement properties, Test Path Generation

module searches test paths, including at least one positive

event set, in CompositeProcess instances treated as a directed

graph. These paths are called positive test paths. Negative test

paths are derived utilizing the positive test paths combined

with related negative event sets. Conversion module

transforms the obtained positive test paths and negative test

paths into positive test cases and negative test cases

respectively. The process is mainly based on the information

Xu and Shafin

208

that each node of the test paths has, such as Conditions of

control structure [15], IOPE (Inputs, Outputs, Preconditions

and Effects) properties.

A. Event set partitioning

Validation of interactions is our testing target, so we mainly

focus on the requirement properties related to interactions

among Web Services, such as temporal properties,

application data properties, response time properties and

amount of invocation time properties. Event Set Partitioning

module derives concrete event set collections from

information provided by requirement property formulae to

select test paths and make sure that test cases are associated

with requirement properties.

Requirement properties are described by OWL-S, which is

defined in OWL ontology language and has good semantic

foundation for describing interaction requirements.

ServiceModel of OWL-S, viewed as a Process, describes the

business process of Web Services system, which coordinates

individual services [16]. It is a specification of the ways a

client may interact with a service. There are three types of

Processes: Atomic, Composite, and Simple. OWL-S only

characterizes Composite Process of individual services,

rather than some elements of non-temporal property, such as

starting and finishing of calls, so we extend Requirement

Model of Web Services system in OWL-S as follows:

WSS = (CP, AP, CC, RP). (1)

where WSS stands for Web Services system; CP, a Composite

Process; AP = {Atomic Process}; CC = {Sequence, Split,

Split-Join, Choice, Unordered, If-Then-Else, Repeat-While,

Repeat-Until}; RP = {Interaction Requirement Property}.

Atomic Process is modeled on interaction between Web

Services system and invoked individual service. Each

element in CC stands for a control construct in business

process of Web Services system. Control construct unites

some Atomic Processes to model on business process which

only implicitly expresses some temporal relations among

individual services, rather than describes interaction

requirements explicitly. There is no RP in standard OWL-S

Model. We extend the Model by adding a series of classes to

expression interaction requirement properties and its

availability already has been verified by our research group

[17].

To facilitate its processing, requirement properties are

divided into two categories, temporal properties and

non-temporal properties. FTLTL, based on a rewriting-based

algorithm for generating a minimal special observer FSM

(Finite State Machine), or an automaton, from an LTL (linear

temporal logic) formula, is suitable to describe temporal

constraints of interaction requirement properties [18]. It

provides temporal operators that refer to the future/remaining

part of an execution trace relative to a current reference point.

We define the operators in OWL-S Model to constitute

temporal logic formula. Temporal property can be any legal

LTL formula. It is stored in the form of binary tree in

self-defined class: PropertyFormula and mainly constraints

the calling sequence of Atomic Processes. Most properties

involve several calls of Atomic Processes. Non-temporal

property can be treated as attribute of certain class. We

introduce SWRL into OWL-S to characterize non-temporal

property of Requirement Model, including constraints of

invoking times, application data constraints and constrains of

response time. SWRL allows users to write rules that can be

expressed in terms of OWL concepts to provide more

powerful deductive reasoning capabilities than OWL alone.

Semantically, SWRL is built on the same description logic

foundation as OWL and provides similar strong formal

guarantees when performing inference.

Events in this paper refer to the invoking of related Atomic

Processes. An event is associated with either a non-temporal

property or a predicate of temporal property formula. If the

latter, it is expressed by property hasAtomicProcess of

self-defined class SoapAction which is the leaf node of

formula binary tree. Positive event set is derived from

non-temporal property and antecedent of temporal property.

It contains series of events that may make the property

formula true. Currently non-temporal property is simply

associated with calls of single Atomic Process, so there is only

one positive event set in their event set collections and the

event set contains just one event, namely the invoking of

Atomic Process that the property is associated with. Negative

event set is educed from converse consequent of temporal

property (refer to our previous paper [17] for details). If these

event sets have duplicate ones in the collections, remove the

duplicates. The corresponding relationship between event

sets and formulae are stored during the processing.

B. Test path generation

Requirement properties are described by logical Formulae.

They are abstract properties of demand level, not suitable for

selecting test paths directly. We utilize concrete event set

collections, which already have been obtained by Event Set

Partitioning, to select test paths.

Test path generation algorithm is a recursive algorithm. It

searches test paths in the tree structure storage of

CompositeProcess instance straightly. When Web Services

system is very complicated, application flow chart of the

system, described by CompositeProcess instance, becomes

more sophisticated. Control construct of flow chart, branch,

concurrency and loop will lead to an explosion of test paths.

The search algorithm of control construct Sequence is shown

in Fig. 2.

Automated Testing of Web Services Systems Based on OWL-S 209

Figure 2. Processing of sequence.

There are three ways taken to solve the combinatorial

explosion problem.

 Serialize process components of concurrent construct. For

concurrent construct, Split and Split + Join, output

sequence of its process components is specified, but the

meaning of concurrency among the process component

does not change.

 Control the cycle index of loop construct. Perhaps there

are many sub-test paths in the application flow chart

described by CompositeProcess instance. When the

algorithm accesses loop construct, Repeat-Until and

Repeat-While, we constrain the cycle index, for example

only once.

 Filter sub-test paths using obtained event sets and remove

paths that have nothing to do with requirement properties.

For control constructs whose outputs can be serialized,

each of their sub-nodes separates the whole construct into

several sub-constructs. As a result, several sub-paths are

obtained from each sub-construct. A complete test path

consists of these sub-paths combined together in

sequence. If there is any event set of collection included in

a test path or a sub-path, the path is relevant to the event

set collection; otherwise, filter out the test path.

C. Conversion to abstract test case

Test paths are converted into test cases according to IOPE

properties of the process ontology and condition information

in OWL-S. Conversion from positive test paths to positive

test cases is similar to that from negative test paths to

negative test cases. In our research, a test case is defined as an

ensemble of input data, expected output (specific value or

certain constraint of output), operations or calling sequence

of Web Services, and set of formulae which it verifies.

The correspondences between test path and test case are

shown in Table 1. The information collection of test path is

performed automatically. Information for precondition,

incondition and conditional effect/output of Atomic Process,

is abstracted from properties of the Atomic Process. The rest

items’ information for test path, listed in first column of

Table 1, is obtained directly from test path generation

algorithm. Thus, from the last Atomic Process of the test

path, we match its precondition and incondition with output

and conditionalEffect of Atomic Process before it, until the

first Atomic Process of the test path. For Atomic Processes

with no constraint, we use the first Result as default value

during the matching from back to front. Otherwise, for those

have constraints, match all Results with the conditions in

condition list one by one until the best matching is find out.

Table 1. Correspondences between test path and test case.

Test Path Test Case

conditions of path, preconditions,

inconditions
inputs

calling sequence of Atomic Processes
operations or calling sequence

of Web Services

set of formulae which it verifies
set of formulae which it

verifies

conditional effects\outputs of Atomic

Processes in the test path
expected outputs

According to this section, abstract test case, including

abstract input data (data types and constraints), expected

output, operations or calling sequence of Web Services and

set of formulae which it verifies, is deduced from interaction

requirement properties and stored separately in items.

III. Specific Test Case Output

As mentioned above, only abstract input data, such as data

types and constraints, are derived. However, instances of

input data are not available. Moreover, we integrate the

open-source testing framework Fit to execute mutant

automatically according to the property of Fit, which

describes the test cases by using HTML table, test cases need

to be formatted in tables which are interpreted by a ―fixture‖

written by programmers and saved as HTML files using

ordinary business tools such as Microsoft Word. This section

mainly details how to output test case documents in tables and

html format automatically. The process is shown as follows in

Fig. 3.
Extended OWL-S

Requirement Model

Specific
Input Data

SWRL
Requirement

Properties

Other Test
Case Items

SWRL Rule
Analyzer

Specific Data
Generation

Test Case
Formatting

Test Case Document

Knowledge Layer

Processing Layer

Type of SWRL
Expression

Abstract
Input Data

Knowledge Layer

Figure 3. Process of output of test case documents.

Algorithm TestPathGeneration

Input: ControlConstruct Instance rootControlConstruct

Procedure:

1. if (rootControlConstruct is an instance of Sequence) {

2. for each process component of rootControlConstruct {

3. invoke function TestPathGeneration recursively using

current process component as parameter

4. store the return at the end of testPathsList

5. }

6. if (testPathsList.size () > 1) {

7. combine all elements of testPathsList

8. store the results in testPathsList

9. }

10. filter the test paths in testPathsList by event sets of positive

event set collection

11. return the first element of testPathList

//now, there is only one element of type List in testPathsList

12.}
Output: List testPathList

Xu and Shafin

210

A. Specific input data generation

In extended OWL-S Requirement Model, self-defined class

ParameterConstraint indicates the running system state that

given parameter meets certain constraints. It has two

properties. Property hasParameter, ranging over owl:

ObjectProperty, represents the constrained object and

hasConstraint, ranging over expr: SWRL-Condition, applies

SWRL to express specific content of the constraint. Class

ParameterConstraint is associated with the antecedent of

certain SWRL expression by hasConstraint to express data

constraint.

SWRL supports the specification of the dependencies and

restrictions of input data. Related SWRL properties of test

case are extracted from OWL-S Model. After parsing and

analyzing, SWRL expression are classified into several types

in accordance with its contents. All these make the

generation of parameter instances convenient. We design

input data generators, which fill the parameter constraints

with real values, for each SWRL expression type. Various

generators are extended according to

the practical application. The parameter values can be

generated based on the constraint analysis of the property,

especially the value constraint and cardinality constraint.

SWRL expressions are conjunctive normal form with form

swrl: ··· /\ swrl: ··· /\ ···. The string after character ―?‖ is the

name of the parameter that the SWRL expression describes.

The number after ―,‖ is a constant of input fields. The

intervals of parameters are determined by their types and

constraints. Conditions influencing the value of parameters

are mapped into input fields. It means that for each

parameter, input field is classified into effective equivalence

classes and noneffective equivalence classes by equivalence

partitioning. Initial input data are generated randomly from

different equivalence classes. Then boundary value analysis

is applied to supplement data generation. Main algorithm is

shown as follows in Fig. 4.

Figure 4. Main algorithm of specific input data generation

Functions in algorithm are defined as follows:

 InitialRegion (Data Type) returns the region in which

computers can handle data of Data Type.

 DataRegion is effective equivalence class. It consists of a

group of input intervals that have no intersection.

1

,j

j u

DataRegion DataRange

 (2)

1 21 2 , .j jfor j j DataRange DataRange (3)

 CalRange (Expi) computes the range of parameter Px

under SWRL constraint Expi.

 GetRange(DataRegion, j) returns the jst input interval of

Data Region.

 GenerateInputData (DataRangej, Num) generates certain

number, Num, of input data randomly. Num is given by

user. It returns input data set following uniform

distribution, including boundary values.

 CalNoneffectiveRegion (DataRegion) returns

non-effective equivalence class: NoneffectiveDataRegion.

B. Test case formatting

Java2word is a java program called Microsoft Office Word

document components (Class). It creates Microsoft Word

Documents from java code without using any component or

library. In order to realize batch generation of word

documents containing tables, the template file of Microsoft

Word Document must be replaced with new test case

template. New template has two tables, Setups and

fit.ActionFixture (demonstrated in Fig. 9) and they can be

interpreted by a ―fixture‖ written by programmer. Bookmarks

are added to each cell so that test case data can be inserted

into correct position. The tables are modified according to

concrete applications.

When Word documents of test cases are obtained, we use

Jacob transform them to html documents. Jacob is a java-com

bridge that allows programmer to call COM automation

components from Java. It uses JNI to make native calls into

the COM and Win32 libraries.

IV. OWL-S Based Mutation Testing

From microcosmic perspective, there are two classes of errors

in Web Services system. One is hidden in the Web Services’

combination process. It is due to programmer’s

misunderstanding of system requirements. To avoid this type

of error, program should be written in accordance with

Requirements Model of Web Services system described by

extended OWL-S. The other is potential within sub Web

Services. Compared with the former, it is more difficult to be

detected as source codes of sub Web Services are always

invisible. The theoretical foundation of mutation testing is

the competent programmer hypothesis and the coupling

effect. The former means competent programmers tend to

write programs close to be correct. The latter states that a test

data set that detects all simple faults in a program is so

sensitive that it will also detect more complex faults. It is

proved that if a software system has an error, then there must

be a group of corresponding mutants, and the mutants can be

killed by a certain test case set [19].

In general, for a given program P and its corresponding

Algorithm SpecificInputDataGeneration

Input: Data Type, type of Parameter Px,

Expj, SWRL expressions relating to Px
1. DataRegion = InitialRegion(Data Type)

2. for (i = 1 to m) {

// m is the number of SWRL expressions in conjunctive normal form

3. DataRegion = DataRegion ∩ CalRange (Expi)

4. InputDatapx =
5. for (j = 1 to u) {

6. DataRangej = GetRange(DataRegion, j)

7. InputDatapx=InputDatapx∪GenerateInputData(DataRangej, Num)
8. }

9. NoneffectiveDataRegion = CalNoneffectiveRegion(DataRegion)

10. for (k = 1 to v) {

11. NoneffectiveDataRangek=GetRange(NoneffectiveDataRegion, k)

12. InputDatapx = InputDatapx∪GenerateInputData

(NoneffectivDataRangek, InvalidNum)
13. }

14.}

Output: InputData, input data set of Px.

http://www.iciba.com/practical/
http://www.iciba.com/application/
http://www.iciba.com/algorithm/

Automated Testing of Web Services Systems Based on OWL-S 211

test case set T, the procedure of traditional mutation testing is

as follows[20]:

 Use mutation operators to generate a group of mutants

from P.

 Drive all mutants and P respectively by T; record their

outputs. If the output of a mutant is different from that of

P driven by the same test case, the mutant is killed by the

test case. Otherwise, the mutant is alive.

 Ensure that none of the living mutants is equivalent to P.

 Add new test case and test nonequivalent mutants further

until satisfied mutation score MS is achieved. MS is

computed as follows:

.
D

MS
M E

 (4)

where M is the totality of mutants; D, the number of dead

mutants; E, the number of equivalent mutants. Thus, MS

represents the percentage of nonequivalent dead mutants.

First, tester predefines MS based on software requirements

and testing strategies, and then kill individual living mutant

by adding new test cases, verifying correctness, analyzing

equivalence. The mutant killing operation is repeated until

MS is satisfying. Software errors in P are finally found and

corrected by this process. Fig. 5 shows the process of our new

mutation testing.

A. Mutation operator

In our testing, mutants are generated using mutation

operators from original Web Services system. The operators

have several features resulting from differences between

traditional software testing and Web Services system testing

like the operators are more focused on misunderstanding of

requirement model, especially errors caused by combination

of sub Web Services, and they only work on interface of sub

Web Services.

Extended OWL-S
Requirement Model

Service
Grounding

Process
Model

SWRL Requirement
Constraints

Model Analyzer

Mutation Engine

Automated Execution Engine

interface and constraints

rule of business logic

Mutation
Operator

Original Web
Services System

Test Case
Documents

Mutant

Verification
execution results

Testing Report

Processing Layer

Knowledge Layer

Figure 5. Process of mutation testing based on OWL-S.

Abundant requirement constraints in extended OWL-S

Model are very beneficial to the testing. Assume all syntax

errors injected in mutants are ignored. Mutation operators

based on OWL-S Requirement Model are defined by our

research group as follows [17]:

 EMP (Empty Parameter). For example, a given sub Web

Service interface, boolean login(String name, String

passwd), is mutated to login(null, passwd) or login(―‖,

passwd).

 EXC (Exchange Parameter). E.g., boolean login(String

name, String passwd) to login(passwd, name).

 IUO (Insert Unary Operator). E.g., Boolean save(String

cardNum, int amount) to save(cardNum, -amount) or

save(cardNum, ~amount) or save(cardNum, ++amount)

etc..

 PS (Parameter Shift). E.g., boolean save(String cardNum,

int amount) would be mutated to save(cardNum,

amount>>1) or save(cardNum, amount<<1).

 PLT (Parameter Length Transform). E.g., if there is a

constraint swrl: stringLength(?passwd, 6), boolean

logon(String name, String passwd) is mutated by

appending one character to passwd filed and the length of

passwd filed becomes seven.

 PA (Parameter assignment). E.g., if there is a constraint

swrlb: lessThan (?amount, 2000), boolean save (String

cardNum, int amount) to save(cardNum, 2000) by set the

boundary value.

 SSRTT (Sub Service Response Time Transform). When

timeout constraint occurs on a given sub Web Service,

delay the sub Web Service’s invocation according to the

value of property hasTimeout.

 SSIS (Sub Service Interface Swap). E.g., given two sub

service interfaces boolean f(int) and boolean g(int),

replace one with the other when invoking.

B. Mutant generation

Mutant generation means injecting errors into the original

Web Services system. There are two way of injecting. One is

in source code level, called compile-time error injection. For

example, 1i i is mutated to 1i i . The other is in

binary code level, called runtime error injection.

Compile-time error injection needs complex syntax and

grammar analysis of source code, while runtime error

injection requires special platform (software or hardware).

Considering Requirement Model and Service Grounding

which map the abstract Atomic Process to concrete operation

in WSDL documentation, we have brought forward mutation

using a new technology, AOP (Aspect-Oriented

Programming).

AOP is a new technology and its compiler could construct

new system by recompiling original software system with

AOP files. Our researches are based on java platform and

Web Service instances are constructed in WebLogic platform.

Besides, AOP prototype has the best java implementation,

AspejctJ. Therefore AspectJ is introduced to give technical

Xu and Shafin

212

support. Using AOP to generate mutants demands neither

source code of the original system nor support of special

(hardware or software) platform. It just needs binary code of

original system. Moreover, mutation based on AOP takes

good advantage of our self-defined mutation operators.

To mutation testing, the most important concepts of AOP

are ―pointcut‖ and ―advice‖. Low level information on system

implementation is required to form ―pointcut‖. The formal

definition of ―pointcut‖ is show in Fig. 6. We parse Service

Grounding by using OWL-S API of Mindswap [20] to get the

information. We use ―advice‖, especially ―around advice‖, to

mutate, as errors are generated into ―around advice‖ body by

mutation operators. There are two other advices, ―before

advice‖ and ―after advice‖. They together with ―pointcut‖ aid

tester with tracing the execution of program. The formal

definition of ―advice‖ is show in Fig. 7.

<pointcut> ::= <access_type> pointcut <pointcut_name> ({<parameters>})
 : {[!] designator [&& | ||]};
<access_type> ::= public | private [abstract]
<pointcut_name> ::= {<identifier>}
<paramters> ::= {<type> <identifier> }
<designator> ::= designator_identifier(<signature> | <typePattern> | <pointctu>)
<designator_identifier> := call | execution | target | args | cflow | within | ..
<identifier> ::= letter {letter | digit}
<type> ::= defined valid Java type
<typePattern> ::= Java class type

Figure 6. Formal definition of ―pointcut‖.

<advice> ::= <declaration> "{" [<body>] "}"
<declaration> ::= <advice_type> ({<parameters>}) <after_qualifier>
 : [args(<parameters>) &&] <pointcut>
<advice_type> ::= before | after | around
<paramters> ::= {<paramter>}
<paramter> ::= <type> <identifier>
<after_qualifier> ::= returning (<paramter>) | throwing (<paramter>)
<body> ::= valid Java code

Figure 7. Formal definition of ―advice‖.

When a mutant executes, the execution trace will be

recorded. We use the record to kill the mutants according to

business logic implied in OWL-S Requirement Model.

An example of AspejctJ file, injected errors of sub service

response time, is demonstrated in Fig. 8.

Figure 8. AspectJ file of sub service response time mutation.

C. Mutant execution

Fit, Framework for Integrated Test, is an open-source tool for

automated customer testing. It enhances communication and

collaboration, and integrates the work of customers, testers

and programmers [21]. Customers provide examples of how

their software should work. Those examples are then

connected to the software with programmer-written test

fixtures and automatically checked for correctness. The

customers’ examples are formatted in tables which are

interpreted by a ―fixture‖ written by programmers, and saved

as HTML files using ordinary business tools such

as Microsoft Excel, Microsoft Word. We integrate Fit to

execute mutants automatically. Fit parses HTML, finds

tables, and then pass the information in the tables to fixtures.

The fixtures take the information from the tables, turn them

into method calls in the actual application, and check the

examples in the table by running the actual program. Then,

Fit creates a copy and colors the tables green, red, and yellow

according to whether the software behaved as expected.

There are two steps to verify a mutant. Firstly, the mutant

is filtered by verification rules of sub service combining,

which are extracted from business logic described by set CC

of Requirement Model. This step obviously reduces the

testing cost. CC, containing eight control structures, is an

abstract of Process Model. The control structures organize

control flow of sub Web Services. Construct a directed graph

G = (V, E) from CC. Element in set V represents Atomic

Process of WSS. Element in set E, such as <a, b>, means that

in software requirements two Atomic Process have timing

relations; namely a must happen before b. As discussed in

Mutant Generation, the trace of mutant execution has already

been achieved. In the implementation, for example, there are

two sub Web Services, named a, b and both are combined to a

complex web service. If the system accesses service a before

service b, then the tracing execution information would be

like as follows:

…

start sub service a and timestamp is 1209885668203

end sub service a and timestamp is 1209885669207

start sub service b and timestamp is 1209885670901

end sub service b and timestamp is 1209885671402

Now we use the trace to verify the mutant. If the trace does

not conform to G, stop the mutant execution and mark the

mutant dead. Otherwise, the mutant goes to the next step,

verifying outputs of the mutant execution using Fit.

Automatic execution engine of mutants is built on the basis of

framework Fit which supports multiple programming

languages and describes the test cases by using HTML table

in human readable, writable and understandable way.

V. Experiments

To verify the effectiveness and feasibility of extended OWL-S

Model and methodology proposed in previous section, an

automatic testing prototype system for Web Service system

based on OWL-S is implemented in this paper according to

the algorithms we have proposed.

A. Instance of Web Services system

We construct an instance of Web Services system, Online

Bank [22]. It is combined by five sub Web Services

implemented in WebLogic platform, including CCBank,

ICBank, Encryption, Login and Verify. The names imply

their functions. The business logic of Online Bank is shown

in Fig. 9.

http://www.iciba.com/prototype/

Automated Testing of Web Services Systems Based on OWL-S 213

Users log in the Web Services system by inputting user id

or card number and password must be supplied as well. The

system can encrypt the input data, verify their validation, log

in a selected bank and do some business process such as

saving or withdrawing. OWL-S Requirement Model of

Online Bank web service is constructed by protégé. The

Model has a CompositeProcess including AtomicProcess

instances: cp_Logon, cp_ICBank and cp_CCBank (shown in

Fig. 10).

Start

logon_cp

login succeed?

Choice

ICBank_cp CCBank_cp

logout?

Yes

End

logout_cp

Yes No

No

Repeat Until logout

bank_cp

Figure 9. Business logic of Online Bank.

 cp means composite Web Service.

When Online Bank integrates sub Web Services and

implements corresponding business logic, we supply two Sub

Web Service sets, Bank Service1 and Bank Service2. Both are

realization of the five sub Web Services and can be used as

sub Web Service set of Online Bank. Software errors are

injected into Bank Service1 intentionally, while Bank

Service2 strictly obeys OWL-S Requirement Model. The

interaction requirement properties which contain SWRL

expressions are illustrated in Table 2.

Figure 10. Tree structure of Online Bank Requirement

Model

Table 2. SWRL requirement constraints of Online Bank.

Requirement constraints Comments

hasTimeout(logon, 20) Login is limited in 20 sec.

hasTimeout(save, 20) Save is limited in 20 sec.

hasTimeout(withdraw, 20) Withdraw is limited in 20 sec.

swrl:stringLength(?id, 18) User id length is 18

swrl:stringLength(?cardNum, 19) Card number length is 19.

swrl:stringLength(?passwd, 6) Password length is 6.

swrl:greaterThan(?save_amount, 0) Save amount is greater than 0.

swrl:greaterThan(?withdraw_amount,0)/\
swrl:lessThanOrEqual(?withdraw_amount,
2500)

Withdrawn amount is in (0,

2500].

Eight control structures Describe business logic .

B. Automated testing

After constructing instance of Web Services system,

including Online Bank, Bank Service1 and Bank Service2,

the automatic testing is executed twice. The objects under test

are as follows:

 Web Services system Online Bank + sub Web Service set

Bank Service1, there are software errors in sub Web

Services of Bank Service1.

 Web Services system Online Bank + sub Web Service set

Bank Service2, Bank Service2 has no software errors and

strictly obeys OWL-S Requirement Model.

According to the properties of automated testing of Web

Services system based on OWL-S Requirement Model, we

applied two types of measurement criteria. One is previously

described MS. Higher MS represents better testing. The other

is SSIC, short of ―sub Web Service interface coverage‖. SSIC

evaluates testing adequacy of certain sub Web Service that is

Xu and Shafin

214

combined to composite Web Service. It is defined: given

certain sub Web Service SS, the number of its interfaces

called by the composite Web Service N, and the number of its

interfaces which have been mutated at least one time N1,

1 .
N

SSIC
N

Compared with MS, SSIC requires neither statements nor

paths covered. This feature accords with invisibility of source

code of sub Web Services. MS is more rigorous than SSIC. If

MS approximates to 100%, SSIC must be bound to 100%.

However, the full marks of MS could hardly be achieved in

practical application due to high testing cost. SSIC is

supplementary of MS to evaluate the testing adequacy of sub

Web Services better.

As two objects have the same OWL-S Requirement Model

and they are both implemented by Online Bank Web Services

system, all results of both objects before mutant execution are

the same in the user interfaces (shown in Fig. 11, 12, and 13).

Figure 11. Generate mutants.

Figure 12. Compile mutants.

The documents of test case are in htm format and the

specific contents are shown in Fig. 14.

When come to the interface of mutant execution, we select

a group of the same test cases for the two objects to drive the

mutant respectively (Fig. 15).

However, the statistical data of mutant execution, driven by

the same test case set are quite different, as sub Web Service

sets of the two objects are distinct—one is from Bank

Service1 which has software errors and the other is from Web

Service2 which obeys Requirement Model strictly.

Figure 13. Generate test cases.

Figure 14. Specific Contents of HTM Document.

Figure 15. Execute mutants.

Statistical result information for first testing using Web

Services system Online Bank + sub Web Service set Bank

Service1, is show in Fig. 16. There are software errors like

errors of sub service response time in sub Web Services of

Bank Service1.

Fig. 17 displays statistical testing data for second testing

using Web Services system Online Bank + sub Web Service

set Bank Service2, Bank Service2 has no software errors and

Automated Testing of Web Services Systems Based on OWL-S 215

strictly obeys OWL-S Requirement Model.

Figure 16. Statistical analysis of first testing.

Figure 17. Statistical analysis of second testing.

The statistical data of two object shows that it is more

difficult to kill mutants of the system injected errors because

it requires more exhaustive test case set. Thus, one of the

strong points of our automatic testing system is to find and

use the smallest scale of test cases to test the Web Service

System completely by adding test cases, which are

automatically generated according to the extended OWL-S

Requirement Model, to improve the MS. The SSIC reached

100% because the scale of target Web Services system is

small. The experiments in [22] have already prove that the

satisfied mutation score MS can always be achieved on the

premise of the smallest test case set by our testing system.

The experimental results indicate that test methods

proposed in this paper can not only evaluate test case sets, but

also detect software error in target system under test. It

demonstrates the effectiveness of the methods proposed in

this paper at the same time.

VI. Conclusion and Discussion

A series of applicable automated testing algorithms for Web

Services system is designed and realized based on extended

OWL-S Requirement Model in java platform in this paper.

Not only does it use requirement constraints effectively to

deduce test cases according to application flow, generate

mutants under AOP technology support and execute mutants

by improving FIT testing framework, but also reduces the

testing cost by using business logic implied in extended

OWL-S Model to kill mutants and increases the degree of

automation for the testing. According to testing

characteristics, two sufficient measurement criteria are

employed to evaluate the testing process in the system.

Experiments have shown that our algorithms meet the

applied demands and perform well as an automated testing

tool for Web Services system.

Although the algorithms are implemented achieving the

research objectives and performs well as an automatic testing

tool for Web Service system, there still are a lot of stuff to

work on. For example, put forward more effective mutation

operators focused on Requirement Model, extend more data

types for input data generator.

References

[1] H. Huang, W. –T. Tsai, R. Paul. ―Automated Model

Checking and Testing for Composite Web Services‖. In

Proceedings of the eighth IEEE International

Symposium on Object-Oriented Real-Time Distributed

Computing, pp. 300-307, 2005.

[2] W. Z. Xu, J. Offutt, J. Luo. ―Testing Web Services by

XML Perturbation‖. In Proceedings of the 16th IEEE

International Symposium on Software Reliability

Engineering, pp. 257-266, 2005.

[3] A.T. Endo, A. da Simao, S. Souza, P. Souza. ―Web

Services Composition Testing: A Strategy Based on

Structural Testing of Parallel Programs‖. In

Proceedings of Testing: Academic & Industrial

Conference on Practice and Research Techniques, pp.

3-12, 2008.

[4] H. Zhu, Y. F. Zhang. ―Collaborative Testing of Web

Services‖, IEEE Transactions on Services Computing,

5(1), pp. 116-130, 2012.

[5] N. Looker, J. Xu. ―Assessing the Dependability of SOAP

RPC-Based Web Services by Fault Injection‖. In

Proceedings of the ninth IEEE International Workshop

on Object-Oriented Real-Time Dependable Systems, pp.

163-170, 2003.

[6] N. Looker, J. Xu. ―Assessing the Dependability of OGSA

Middleware by Fault Injection‖. In Proceedings of the

22nd International Symposium on Reliable Distributed

Systems, pp. 293-302, 2003.

[7] L. Gallagher, J. Offutt. ―Automatically Testing

Interacting Software Compontents‖. In Proceedings of

the International Workshop on Automation of Software

Test. pp. 57-63, 2006.

[8] A. Ankolekar, M. Paolucci, K. Sycara. ―Towards a

Formal Verification of OWL-S Process Models‖. In

Proceedings of the fourth International Conference on

Semantic Web, pp. 37-51, 2005.

[9] S. H. Lin, Y. F. Lin, J. J. –Y. Chen. ―BPEL4WS

Verification Environment Using an Enhanced OWL-S

and VDM++‖. In Proceedings of the International

Conference on Advanced Computing and

Communications, pp. 642-647, 2006.

[10] V. Stolz, F. Huch. ―Runtime Verification of Concurrent

Haskell Programs‖, Electronic Notes in Theoretical

Computer Science, 113, pp.201-216, 2005.

http://www.iciba.com/method/
http://www.iciba.com/automatization/

Xu and Shafin

216

[11] B. Meyer, J. Woodcock. Verified Software: Theories,

Tools, Experiments, Springer Berlin Heidelberg, New

York, 2008.

[12] M. E. Delamaro, J. C. Maidonado, A. P. Mathur.

―Interface Mutation: an Approach for Integration

Testing‖. IEEE Transactions on Software Engineering,

27(3), pp. 228-247, 2001.

[13] J. H. Andrews, L. C. Briand, Y. Labiche. ―Is Mutation

an Appropriate Tool for Testing Experiments?‖. In

Proceedings of the 27th International Conference on

Software Engineering, pp. 402-411, 2005.

[14] R. Wang, N. Huang. ―Requirement Model-Based

Mutation Testing for Web Service‖. In Proceedings of

the fourth International Conference on Next

Generation Web Services Practices, pp. 71-76, 2008.

[15] R. Casado, J. Tuya, C. Codart, M. Younas. ―Test Case

Design for Transactional Flows Using a

Dependency-Based Approach‖. International Journal

of Computer Information Systems and Industrial

Management Applications, 5(2013), pp.30-40, 2013.

[16] Y. Z. Feng, M. Kirchberg. ―Verifying OWL-S Service

Process Models‖. In Proceedings of the IEEE

International Conference on Web Services, pp. 307-314,

2011.

[17] Y. Yu, N. Huang, Q. Z. Luo. ―OWL-S Based Interaction

Testing of Web Service-Based System‖. In Proceedings

of the third International Conference on Next

Generation Web Services Practices, pp. 31-34, 2007.

[18] V. Aravantinos, R. Caferra, N. Peltier. ―Linear

Temporal Logic and Propositional Schemata, Back and

Forth‖. In Proceedings of the 18th International

Symposium on Temporal Representation and

Reasoning, pp. 80-87, 2011.

[19] R. Geist, A. J. Offutt, F.C. Harris. ―Estimation and

Enhancement of Real-Time Software Reliability

through Mutation Analysis‖. IEEE Transactions on

Computer, 41(5), pp. 550-558, 1992.

[20] Y. Jia, M. Harman. ―An Analysis and Survey of the

Development of Mutation Testing‖. IEEE Transactions

on Software Engineering, 37(5), pp. 649-678, 2011.

[21] F. Ricca, M. Di Penta, M. Torchiano. ―Guidelines on the

Use of Fit Tables in Software Maintenance Task:

Lessons Learned from 8 Experiments‖. In Proceedings

of the IEEE International Conference on Software

Maintenance, pp. 317-326, 2008.

[22] S. H. Shafin, L. Zhang, X. Xu. ―Automated Testing of

Web Services System Based on OWL-S‖. In

Proceedings of the World Congress on Information and

Communication Technologies, pp. 1103-1108, 2012.

Author Biographies

Xi Xu received the B. Sc. Degree in computer science in

2007 from University of Science and Technology Beijing,

China. She is currently a PHD candidate at University of

Science and Technology Beijing. Her research interests

include software testing, image processing and pattern

recognition.

Shawkat Hasan Shafin received the B.Sc. Degree in

computer science in 2007 from University of Science and

Technology Beijing, China and the M. Sc. in computer

science in 2010 from Beijing University of Aeronautics and

Astronautics, China. He is currently a PHD candidate at

Beijing University of Aeronautics and Astronautics. His

research interests include software testing and Web Services.

