
Journal of Information Assurance and Security.
ISSN 1554-1010 Volume 13 (2018) pp. 137-148
c©MIR Labs, www.mirlabs.net/jias/index.html

Dynamic Algorithm based on split and merge for
Data Streams Clustering

Chedi Ounali1, Fahmi Ben Rejab2 and Kaouther Nouira3

1Université de Tunis, ISGT,
LR99ES04 BESTMOD, Le Bardo Tunisia

chedy.ounelly@gmail.com

2Université de Tunis, ISGT,
LR99ES04 BESTMOD, Le Bardo Tunisia

fahmi.benrejab@gmail.com

3Université de Tunis, ISGT,
LR99ES04 BESTMOD, Le Bardo Tunisia

kaouther.nouira@planet.tn

Abstract: Clustering is a widely used technique. It is a disci-
pline that aims to reveal groups, or clusters of similar entities in
data, but data in our case are large and continuously generated.
In addition, we have to deal with the change at the level of clus-
ters number that can be extended or reduced at every momen-
t. We present a new technique allowing the merge and split of
clusters while receiving streaming data in order to create stable
clusters without losing information or retraining from scratch.
Keywords: Clustering; Clusters; Data stream; K-Means; Dynamic
clustering; Split; Merge.

I. Introduction

Clustering is an unsupervised learning method as it classifies
data-sets without any a prior knowledge. It has been used
in different fields such as bio-informatics, image process-
ing, genetics, speech recognition, market research, document
classification, anomalies detection and weather classification
[1].
There are various algorithms for the data clustering. The k-
means algorithm is one of the most popular, it is very simple
in operation, suitable for unraveling compact clusters and a
fast iterative algorithm[9]. k-means algorithm divides N el-
ements from data-set for k clusters that used center-based
clustering methods [9]. Consequently, the main challenge
for these clustering methods is in determining the number of
clusters[1]. In general, the number of clusters has been set by
users or archives from knowledge of research[10]. But a bad
choice of the number of cluster can lead to a wrong distribu-
tion of observations. Thats how the term adaptive clustering
was born. Their for incremental remains to observations and
to the most adequate cluster to the element [11]. In our previ-
ous paper Incremental k-means based on split technique [26],
we proposed a new version of k-means to detect the cluster
to be split. However, it does not cover the issue presented by
Big Data which is processing real-time data or to deal with
the shrink of clusters .

In this research, we propose a dynamic clustering algorith-
m based on k-means to deal the with incoming data at real
time. In addition, it allows the update of clusters distribu-
tion without retraining from scratch by going from k cluster
to k + 1 clusters or k − 1 clusters based statical and math-
ematical tools. The rest of our paper is organized as follow:
Section 2 contains the standard version of K-Means. Sec-
tion 3 deals with the notion of dynamic clustering. Section
4 presents the proposed approach. Section 5 contains the
results of experimentation, and the last section presents the
conclusion.

II. K-Means algorithm

The k-means algorithm is a partitional clustering method pro-
posed in 1967 by MacQueen [27], it can be described by the
following steps [2].

1. Choose initial centroids m1..k of the clusters C1..k

2. Calculate new cluster membership. A feature vector xj
is assigned to the cluster Ci if and only if :

I = argk=1...kmin||xj −mk||2 (1)

3. Recalculate centroids for the cluster according.

mi =
1

|ci|
∑

xj (2)

4. If none of the cluster centroids have changed, finish the
algorithm. Otherwise go to Step (2).

The standard k-means always retrain from scratch if their
is a modification in the data-set which causes a big loss of
time, thats why the use of incremental clustering has been
improved last years.

MIR Labs, USA

Dynamic Algorithm based on split and merge for Data Streams Clustering 138

A. Distance measures

There are different methods that the algorithm K-means uses
for distance measure between these distance measures there
are:

1. Euclidean distance and squared Euclidean distance,
are generally calculated from row data and not from s-
tandardized data. The advantage of the Euclidean dis-
tance is that the addition of a new element cannot in-
fluence the measure of distance between two other ele-
ments, it is calculated as follow [3]:

D.E(a, b) =

√√√√ k∑
i=1

(ai − bi)2 (3)

2. Manhattan distance, consider that the shortest path
between two points in the xy-plain is the hypotenuse
which refer to the Euclidean distance, the Manhattan
distance measure will be like [4]:

D.E(a, b) =

k∑
i=1

|ai − bi| (4)

3. The Jacquard distance, is a metric measure that infor-
m how dissimilar tow sets are. It represents a comple-
ment to the Jacquard index, and it is obtained by sub-
tracting the Jaccard coefficient from one. The Jaccard
distance is represented as follows [5]:

D.J(a, b) =

∑n
i=1(ai − bi)2∑n

i=1(a2i +
∑n

i=1(b2i −
∑n

i=1 aibi)
(5)

K-means cant deal with incremental datasets. Whenever new
elements added, the algorithm needs to retrain from scratch
which causes loss of information and time where time is such
challenge for this kind of algorithms. So to deal with this
problem incremental k-meas was proposed.

III. Dynamic clustering

A large area of research in clustering has focused on improv-
ing the clustering process such that the clusters are not de-
pendent on the initial identification of cluster representation.
There are versions of adaptive clustering that allows the re-
generation of clustering procedure from scratch to response
to the change of elements but those techniques can produce
large deference in term of the size of clusters and a huge
waste of time[12]. To avoid the regeneration from scratch,
the split technique was induced in clustering [13]. It was used
to create an incremental clustering procedure, but the prob-
lem was always which cluster should split. The following
approaches are typically used for the selection of the cluster
[14][15]:

1. Complete partition: every cluster is split, so obtaining a
complete binary tree.

2. The cluster having the largest number of elements is s-
plit.

3. The cluster with the highest variance.

4. The shape of the cluster.

The above criterion are extremely simple. The first criteria
split every cluster that provide a complete tree, but it com-
pletely ignores the issue of the quality of the clusters. The
second one is also very simple: it does not provide a com-
plete tree, but it has the advantage of yielding a balanced
tree, where the leaves have approximately the same size. The
tow last criteria is the most sophisticated in relation with the
tow previous, since it is based upon a simple but meaningful
property of a cluster. This is the reason why highest variance
criteria is the most commonly used criterion for cluster se-
lection.
Adding to those there are other version of incremental clus-
tering. Qiu et al [6] represented a clustering boundary de-
tection method by the transformation of affine space, this
method where argued by Tong et al [7] by claiming that
boundary points are essential for clustering due to their rep-
resentation of the distribution of the dataset. In literature we
found that all works either search for a new manner to create
a new algorithm that allows the incremental in the clustering
level or used the split technique but with a simple criterion
in the phase of the choice of the cluster to split. One of the
most known algorithm based on k-means and uses the split
technique to create new clusters is Bisecting k-means [8]; but
bisecting k-means creates a complete tree from the k-cluster
that given at the beginning. In our case we are searching
for the cluster that had the most spreading out elements and
none of these algorithm can respond to the problem. Howev-
er, dynamic clustering aims to group data being accumulated
and updates clusters based on the last clustering result. The
strategy used by incremental k-means optimizes the cluster-
ing process and reduces the time needed to get final results,
where time is a critical factor for the usability of some appli-
cation that uses that type of algorithm [18].
Dynamic clustering as a form of unsupervised on-
line/incremental machine learning algorithm considers two
concepts [19]:

1. Incrementality of the learning methods to divide the
clustering model.

2. Self-adaptation of the learned model (parameters and
structure).

Works that involves Dynamic clustering will be presented
next:

1. Dynamic Clustering of Data with Modified K-Means
Algorithm [28], it is very difficult to fix the number of
clusters in advance. The proposed method deals with
both the cases, for known number of clusters in advance
as well as unknown number of clusters. The user has
the flexibility either to fix the number of clusters or in-
put the minimum number of clusters required. In the
former case it works same as K-means algorithm. In the
latter case the algorithm computes the new cluster cen-
ters by incrementing the cluster counter by one in each
iteration until it satisfies the validity of cluster quality.

2. Dynamic clustering and management of mobile wire-
less sensor networks [29], represents a self-organizing

139 Ounali et al.

and adaptive Dynamic Clustering (DCMDC) solution to
maintain networks. This solution is based on dividing
the network into well delimited clusters. Incremental-
ly adding the number of clusters by creating new ones
from the misclassified elements.

3. Fully Dynamic k-Center Clustering [30], many real-
world applications might need to deal with arbitrary
deletion and insertions. For example, one might need
to remove data items that are not necessarily the oldest
ones, because they have been flagged as containing in-
appropriate content or due to privacy concerns. Cluster-
ing trajectory data might also require to deal with more
general update operations. The algorithm is based on
(2 + ε) approximation for the k-center clustering prob-
lem with small amortized cost under the fully dynamic
adversarial model. In such a model, points can be added
or removed arbitrarily, provided that the adversary does
not have access to the random choices of the algorithm.

For the incremental phase it will be based on the split process
but the number of clusters can decrease not only grown. In
the literature the merge of clusters where based on CF-Trees
and its additive properties [20]. To cover the issue of the
grown and decrease of number of clusters we propose a new
algorithm based on k-means which allows the split and merge
of clusters while receiving data streams. This algorithm is
based on different criterion from statistics.

A. Used Indexes

Methods that can be used to split clusters and other that al-
lows the merge of two clusters are against each other. One is
searching for dispersion within clusters. The second is look-
ing for the intra-clusters similarity.

1. Split techniques

There are different criterion that can be the base
of a split procedure in a group of elements. Between
those we can find Sum of Squared Error known as SSE
and the index of dispersion.

• Sum of Squared Error
SSE is the sum of the squared differences between
each observation and its group’s mean. It can be
used as a measure of validation within a cluster.
If all elements within a cluster are identical, the
SSE would then be equal to zero. SSE is a criteria
for testing the quality of clustering algorithms and
used also in decision trees as a split criteria for
nodes [20].

SSEx∈C =

n∑
i=1

m∑
j=1

(xkj − ci) (6)

• Index of dispersion
The index of dispersion or also known as variance
to mean value, is a common used index in statistics
and probability theory. It quantifies if observations
in a data set are dispersed or highly related to its
centroids. The index of dispersion is the square of

the standard deviation divided by the mean of the
observation [21].

σ2

µ
(7)

Where the standard deviation is calculated as:

σ =

√√√√ 1

N

n∑
i=1

(xi − µ)2 (8)

It is used to quantify either if data elements are
close to their center or if they are widely dispersed.
A low standard deviation means that data are op-
timally clustered. On the other hand, high value
of standard deviation indicates that data points are
spread out over a wider range of values [22].

2. Merge techniques

Merging two sets of data refers to join elements
of both of them together. In clustering for merging two
clusters, the main task refers to the choice of the most
similar two. There are different indexes that can give
data similarity. Between those indexes there are:

• Davies-Bouldin index
Davies-Bouldin is based on the idea that the intra-
cluster similarity should be as lower as possible.
On the other hand, cluster compactness must be
high. The index is based on the index of similar-
ity, its manner of calculation is shown next. The
similarity index reflect how much two clusters are
related to each other [23].

SIij =
I(ci) + I(cj)

I(ci, cj)
(9)

• Centroid distance:
Centroid distance is the most commonly used dis-
tance. It is based on the distance between two d-
ifferent clusters centers. This index is used in dif-
ferent machine learning algorithms such as KNN
[24].

IV. Proposed approach : D-kmeans

Our solution consists of using two alternative operations on
clusters, namely: split and merge. The split operation gives
the opportunity of dividing a cluster into two sub-clusters.
On the other hand, the merge of two clusters refers to cre-
ate one cluster based on the two chosen ones. Our proposal
consists of four stages as shown in Figure 1, starting from
the data preprocessing until the stage of split or merge of
cluster. In the following sections, each step will be detailed
separately for better understanding of the different aims of
the proposed approach.

A. Clustering Phase

• Step 1: K-means
At this level, we aim to create k clusters using the s-
tandard k-means algorithm. It represents the initializa-
tion phase of the whole functionality of the proposed

Dynamic Algorithm based on split and merge for Data Streams Clustering 140

Figure. 1: Workflow of D-kmeans

approach. Defining the number of clusters has no im-
pact on the process of our approach.

• Step 2: Data-streams preprocessing
This phase consists of sending vectors of data to each
cluster based on the Euclidean distance, and at each iter-
ation, the center of the cluster where the stream data has
been inserted will be updated and all inserted elements
in each cluster should be verified based on the new clus-
ters centroids. Data-stream could be interrupted at any
time to response to the user demand of modifying the
number of clusters.

The pseudo-code of the data-stream preprocessing algorithm
is presented next.

Input clusters = {c1, c2, ...ck}, Streaming file F
Output Streams file F
Begin

While (DataIncoming = True) AND (F = NotEmp-
ty) do

clustering (C, firstLine.toVector())
delete (F, firstLine)
For (j = 1, j < k) do

update (Cj)
end For

end While
Return F
End.

• Streaming file:
It represents a file that contains the rest of the dataset af-
ter the creation of the k clusters using simple k-means.
Every ten seconds, ten lines from that file will be col-
lected in order to create true real time streams.

• Clustering():
This function seeks for the most suitable cluster that
could contain the new coming object based on Eu-
clidean distance, the function compares the distance be-
tween clusters centroids and the object. Line.ToVector()
gives the opportunity of creating an instance from the
streaming file line.

• Delete():
After adding the incoming element, it will be deleted
from the streaming file to avoid the redundancy of ele-
ments insertion into clusters.

• Update():
Aims to update the distribution of elements between
clusters and also updating clusters centers to be ready
for collecting new incoming data.

B. Split process

Our proposed split process takes into consideration the
adding a new cluster to the actual distribution of cluster with-
out retraining from scratch. In order to showcase this work
there is an ultimate challenge witch is; witch cluster should
we choose to split. In literature like it was induced before
there are different criterion to chose the cluster to split.
Our proposed split process is based on three different steps
to get final clusters, they are organized as follow:

1. Calculate Score for all clusters

• Calculate SSE

• Calculate Dispersion Index

2. Searching for the highest Score

3. Split the cluster with the highest Score using K-Mean

For the sake of clarity Fig.1 shows the main different stages
from the choice of the cluster to split until getting the k+1
clusters as output.

K=k+1

K

Split Highest score

…. C1 C2 C3 Cn

C1 C2 C3 C4 …. Cn

Index of dispersion
and SSE

Calculation

Figure. 2: Structure of the incremental k-Means

In our work we use both of Sum of Squared Error (SSE)
calculation and Index of dispersion at first level and the size
of clusters at a second level. Through a way or an other
those tow indexes refers to all other split criterion that have
been mentioned; the shape, size and the variance of clusters,
because it calculate the dispersion of elements from the
centroid of the cluster[16].
The split process is based on three different split criterion
that have been induced from statistic and other used with
other machine learning algorithms. The first split criteria
is SSE (Sum of Error Square) which used by CF-trees to
split nodes and used as an evaluation criteria for clustering
algorithms. The second used index is the index of dispersion,
and the last one is the size of clusters.

141 Ounali et al.

The split process begins by calculating both of SSE and
index of dispersion of each cluster. If the two indexes
indicate two different clusters, then moving to the third
criteria which is size of cluster. In this case, the choice
will be the cluster that have the largest number of elements
between the two chosen. Otherwise, the algorithm will split
the cluster that had the biggest SEE and Dispersion at the
same time with out referring to the size criteria.
the split process will be done using Simple K-means algo-
rithm

Pseudo-code of the split process
Input: clusters = {c1, c2, ...ck}
Output: clusters = {c′1, c

′

2, ...c
′

k, c
′

k+1}
Begin
c
′
=c

For each cluster c
′

i in {c′1, c
′

2, ...c
′

k} do
computeSSE (c

′

i)
computeID (c

′

i)
end For
For (j=1, j<= k) do
If SSE(clusteri) = Max(SSE(c

′

1), .., SSE(c
′

k))
then
NumberS ← j

end If
If ID(clusteri) = Max(ID(c

′

1), .., ID(c
′

k)) then
NumberI ← j

end If
end For
If (NumberS = NumberI) then

Split(clusterNumberS)
Else If (cluster.Size(clusterNumberS) >

cluster.Size(clusterNumberI)) then
Split(clusterNumberS)

Else
Split(clusterNumberI)

end If
Return clusters = {c′1, c

′

2, ...c
′

k, c
′

k+1}
End.

• Compute(cluster):

– Input: Cluster i.

– Output: SSE and ID for cluster i.

This method gives the opportunity to calculate the SSE
of each cluster and also the calculation of the Index of
Dispersion of each cluster.

• Max(clusters):

– Input: Clusters.

– Output: Index of cluster.

The function Max() searches into the collection of clus-
ters SSE and clusters Index of Dispersion for the highest
values.

• Split(cluster):

– Input: Clusters i.

– Output: Tow sub-clusters.

The function split() aims to run the simple k-means al-
gorithm with number of clusters k=2.

• cluster.Size(cluster):

– Input: Clusters i.

– Output: Size of the cluster i.

It gives the size of a cluster. The size of a cluster refers
to the number of elements within the cluster.

• NumberS and NumberI are two variable that contain
the index of the cluster that have the highest SSE and
the cluster that have the highest ID.

C. Merge process

Merging two clusters aims to find the most coherent clusters.
It searches into k clusters for the two closest clusters that can
be merged, it is based on two indexes. The first one is Clos-
est Centers of clusters, and the second is the Davis-Bouldin
Index. Figure 3 shows the main idea of the merge technique
functionality. For the first merge criteria, it calculates the

K=k-1

K

Merge closest clusters

…. C1 C2 C3 Cn

C1 C2 Cn-1

Centroid distance
and Davis Bouldin
Index calculation

Figure. 3: Workflow of the merge technique

center of each cluster and creates a matrix that contains all
distances between each pair of clusters. Table 1 shows the
number of elements of each cluster for an example dataset
D1 with initialization of cluster number k=4, Figure 4 shows
the matrix that contains centroid distances for each cluster.

Table 1: Number of instances per cluster, k=4
Datasets D1
Cluster 1 104

Cluster 2 206

Cluster 3 180

Cluster 4 93

The first line and the first column represent centroids of dif-
ferent clusters. In our example, we have four clusters. Cen-
troids distance matrix is a square matrix where each row rep-
resents the distance between two different clusters centroids

Dynamic Algorithm based on split and merge for Data Streams Clustering 142

 0.0 C1 C2 C3 C4

 C1 0.0 *** *** ***

 C2 581.03 0.0 *** ***

 C3 716.45 188.99 0.0 ***

 C4 135.42 770.03 905.44 0.0

Figure. 4: Centroids Distance Index per cluster

using the Euclidean distance. Clusters centroids will be cal-
culated like:
(CC =

∑ xi

n), where xi represents the element number i
from the current cluster and n is the total number of elements
within this cluster. Between those distances that have been
calculated, the algorithm will take the two closest clusters
that have the lowest distance. Moving to the second merge
criteria which is Davis Bouldin Index, Figure 5 shows an ex-
ample of the Davis Bouldin Index matrix with the same four
clusters used previously with the Centroids Index criteria.
Contrary to Centroids Index, the Davis Bouldin Index will

 0.0 C1 C2 C3 C4

 C1 0.0 *** *** ***

 C2 7.592 0.0 *** ***

 C3 6.157 23.341 0.0 ***

 C4 32.577 5.729 4.872 0.0

Figure. 5: Davis Bouldin Index matrix per cluster

take into consideration the two clusters that have the highest
index. The matrix shows the degree of similarity between
clusters, the bigger it is the closer clusters are. The similarity
calculated by the Davis Bouldin Index is shown in equation
7:

SIij =
I(ci) + I(cj)

I(ci, cj)
(10)

Where:

• I(ci) represents the average of distance between each
element and its corresponding cluster centroid.

• I(Ci, Cj) is the distance between the two clusters cen-
troids.

The merge process is based on two indexes criterion as
shown.. The Centroids Index searchs for the minimum dis-
tance into a matrix of distances between clusters. Otherwise,
the Davis Bouldin Index generates a matrix of similarity
indexes between clusters, the two clusters that have the
biggest index are the best to be merged. In the Figure 3
lowest Centroid Index where presented in bold which refers
to clusters (2 and 3). Also, Davis Bouldin Index presented
in Figure 4 refers to clusters (2 and 3). In our case both
Davis Bouldin Index And Centroids Index indicates the
same couple of clusters to be merged. Clusters that have the
biggest index or the closest centroid distance are not always
the best choice for the merge procedure if both indexes are
not in agreement about the clusters to merge. In this case,
both clusters resulting from the two indexes will be merged.
The cluster that will be maintained is the cluster which has

the lowest SSE.

The pseudo-code of the merge process
Input: clusters = {c1, c2, ...ck}
Output: clusters = {c′1, c

′

2, ...c
′

k−2, c
′

k−1}
Begin
c
′
=c

For each cluster Ai in {c′1, c
′

2, ...c
′

k} do
For each cluster Bj in {c′1, c

′

2, ...c
′

k} do
CD ← computeCentroidDistance(Ai, Bj)
DB ← computeDavisBouldinIndex(Ai, Bj)

end For
end For
For each cluster Ai in {c′1, c

′

2, ...c
′

k} do
For each cluster Bj in {c′1, c

′

2, ...c
′

k} do
If computeCentroidDistance(Ai, Bj) = Min(CD) then
Clust1← Ai

Clust2← Bj

end If
If computeDavisBouldinIndex(Ai, Bj) = Max(DB)

then
Clust3← Ai

Clust4← Bj

end If
end For

end For
If (Clust1=Clust3) and (Clust2=Clust4) then

Merge (Clust1, Clust2)
Delete (Clust1)
Delete (Clust2)

end If
SSE1← SSE(Merge(Clust1, Clust2)
SSE2← SSE(Merge(Clust3, Clust4)

end If
If SSE1 < SSE2 then
NewClust←Merge(Clust1, Clust2)
Delete (Clust1)
Delete (Clust2)

Else
NewClust←Merge(Clust3, Clust4)
Delete (Clust1)
Delete (Clust2)

end If
Return clusters = {c′1, c

′

2, ...c
′

k−2, c
′

k−1}
End.

• Compute(clusters):

– Input: Clusters

– Output: Table

This function has two functionalities: The first one is
the generation of a matrix (CD) that contains distances
between each two clusters centroids, and a second func-
tion which allows the creation of matrix (DB) that con-
tains the Davis Bouldin Index between each pair of clus-
ters.

• Compute(clusters):

– Input: Clusters

– Output: Table

143 Ounali et al.

This function has two functionalities: The first one is
the generation of a matrix (CD) that contains distances
between each two clusters centroids, and a second func-
tion which allows the creation of matrix (DB) that con-
tains the Davis Bouldin Index between each pair of clus-
ters.

• Merge(clusters):

– Input: cluster i, cluster j

– Output: Table

The merge function provides the opportunity of creating
one cluster from the two most similar clusters that have
been chosen using both of indexes.

• Compute(clusters):

– Input: Clusters

– Output: Table

This function has two functionalities: The first one is
the generation of a matrix (CD) that contains distances
between each two clusters centroids, and a second func-
tion which allows the creation of matrix (DB) that con-
tains the Davis Bouldin Index between each pair of clus-
ters.

• Min(matrix)/ Max(matrix):

– Input: Matrix of indexes

– Output: Highest index

Min searches into the centroids distances matrix for
the smallest distance between two clusters. Otherwise,
Max() function does the opposite work, it searches in-
to the Davis Bouldin Index matrix for the biggest index
between two clusters, that reflects how much elements
of both clusters are close to each other. The higher is
the index, the best are clusters to be merged.

• Delete(cluster):

– Input: cluster i

It allows removing clusters that have been merged after
the creation of the new cluster that contains elements of
both of them.

• Clust1,2,3,4:
Clust goes from 1 to 4, they are temporary clusters that
will contain elements of clusters that have been chosen
from both of indexes and ready for the test. We use
those temporary clusters to not lose information within
the chosen clusters.

• NewClust:
It represents the new cluster that will be added to the
main distribution of clusters. NewClust contains ele-
ments of the most similar pair of clusters.

V. Experimentation

A. Framework

The evaluation is divided into two parts: the first part will
be dedicated to the split process against the Incremental k-
means algorithm, and the second part contains a comparison
between the merge process and Incremental k-means with d-
ifferent numbers of clusters. Those comparisons have as pur-
pose the evaluation of the memberships of elements within
clusters using different sizes of clusters in connection with
the run time.
Four different datasets are used to evaluate the performance
of our approach. Three real datasets (Airlines, Bank-data,
3D road network) and a simulated data base (BNG (vehi-
cle)). The number of attributes are not the same for all of
the datasets as shown in Table 4.1. Also, there are no miss-
ing values. Airline dataset, bank-data and 3D road network
dataset were obtained from the UCI repository 1 and the last
dataset BNG (vehicle) was obtained from OpenML 2. Table
2 shows a description in terms of number of instances and at-
tributes for the different datasets that have been used for the
experiments.

Table 2: Description of the used datasets
Datasets #Instances Attributes

Airlines (A) 539382 8

Bank-data (BD) 600 12

3D road network (RD) 434874 4

BNG (vehicle) (VH) 792698 19

• Airlines: Is a real dataset Inspired in the regression
dataset from Elena Ikonomovska. The task is to pre-
dict whether a given flight will be delayed, given the
information of the scheduled departure. The dataset is
composed of 539383 instances distributed between 8 at-
tributes.

• Bank-data: : Contains 600 instances, that refer to 12
different attributes concerning some accounts in a bank.
Bank-data contains real information about bank clients.

• 3D road network: 3D road network with highly ac-
curate elevation information from Denmark used in
eco-routing and fuel/Co2-estimation routing algorithm-
s. This Dataset contains 434874 instances and 4 at-
tributes.

• BNG (vehicle): Vehicle is a simulated dataset that con-
tains 792698 elements and 19 attributes.

B. Evaluation criteria

Clustering analysis does not have any solid evaluation mea-
sure that can be used to evaluate the outcome of different
clustering algorithms [?]. But based on the result of the clus-
tering process, we can find how similar objects within clus-
ters are and how distinct generated clusters are. In our eval-
uation we used two different measures: The first one is Sum

1https://archive.ics.uci.edu/ml/index.php
2https://www.openml.org/d/268

Dynamic Algorithm based on split and merge for Data Streams Clustering 144

of Squared Error (SSE), and the second is Silhouette Index.
Both indexes give a feedback of the similarity inter-cluster
and intra-clusters. In addition, we compare our approach a-
gainst the k-means algorithm in term of run-time.

• Sum of Squared Error
SSE as mentioned, calculates the dispersion of elements
of a cluster in relation with their centroid. Its equation
is shown as follows:

SSEx∈C =

n∑
i=1

m∑
j=1

(xij − ci) (11)

• Silhouette Index:
It refers to a method for interpretation and validation of
clusters. The silhouette is based on cohesion / separa-
tion. It searchs how much an object i is related to its
cluster compared to other clusters. The results are in
the range of [-1..1]. The higher is the result the best,
is the clustering. Silhouette can be calculated with any
distance measure like Euclidean or Manhattan [25]. E-
quation 9 shows how the silhouette index is measured:

S(i) =
b(i)− a(i)

max(a(i), b(i))
(12)

Where:

– a(i): represents the distance between i and all other
objects in the same cluster. It refers to the degree
of membership of the element i to the cluster that
was inserted into. The Smallest is the value of a(i),
the better is the assignment.

– b(i) is the smallest value of the average of dis-
tances between i and all other clusters. The lowest
value of b(i) refers to the second best fit cluster
that i can be inserted into.

– Run-time
The run-time represents the time needed to create
the final result from the beginning of the proce-
dure until getting the final distribution of elements
between clusters.

C. Results and Discussion

In this part, we study the results collected from different ex-
periments. We evaluate the performance of the proposed
Dynamic algorithm for data streams clustering denoted D-
kmeans, compared to Incremental k-means algorithm. This
work is mainly devoted to testing the scalability of our pro-
posed approach, showing how it capes with the weaknesses
of the Incremental k-means.
For the sake of clarity, the evaluation of the split process and
merge process will be done separately following different
steps of the split process and merge process.
Split process evaluation
To investigate the capability of the split process, Table 3 sum-
marizes the number of elements within each cluster after the
initialization using k-means algorithm and the reception of
data streams. The choice of the cluster to split will follow
the split process steps:

1. Calculate SSE and ID

2. Verify clusters to be split.

3. Rerunning k-means with k equal to two on the chosen
cluster.

Table 3: Number of instances when k=3
Datasets A BD RD VH
Cluster 1 175085 259 208329 232555

Cluster 2 254354 183 87929 256205

Cluster 3 109944 157 138616 303938

After the split of clusters which is based on SSE and ID for
the choice of the cluster to split, results will be compared
against results obtained from Incremental k-means with the
same number of clusters.
Split process steps will be done on each of the four datasets.
Table 4 contains the results of SSE for each cluster in every
dataset. Table 5 presents the Indexes of dispersions of each
cluster. Elements written in bold represent highest SSE and
highest ID for each cluster. Clusters to be split after the

Table 4: SSE of clusters when k=3 (E10)
Databases A BD RD VH
Cluster 1 102,02 16,51 0.317 3,05

Cluster 2 318,48 22,02 0.134 9,23
Cluster 3 41,22 12,52 0.022 5,15

Table 5: Index of dispersion for each cluster
Databases A BD RD VH
Cluster 1 43.93 165.2 4.127 8.36

Cluster 2 55.29 189.2 4.208 12.15
Cluster 3 40 170.8 4.224 9.17

use of split criterion of D-kmeans are shown in Table 6, and
Table 7 presents the new distribution of elements between
cluster after the split.

Table 6: Clusters to split
Databases A BD RD VH
Cluster 1 175085 259 208329 232555

Cluster 2 254354 183 87929 256205
Cluster 3 109944 157 138616 303938

Table 7: Number of instance when k=4 using D-kmeans
Databases A BD RD VH
Cluster 1 175085 259 99480 232555

Cluster 2 165714 108 108849 128110
Cluster 3 88640 75 87929 128095
Cluster 4 109944 157 138616 303938

145 Ounali et al.

The first evaluation criteria is SSE, Table 8 contains different
SSE of each dataset, the first row is dedicated to the incre-
mental k-means and the second row contains SSE obtained
using D-kmeans. For a better comprehension of SSE results
given for both algorithms, Figure 6 shows different obtained
results. Results in Figure 6 were normalized using the equa-
tion 13.
From Figure 6, we can conclude that the dispersion of ele-
ments within clusters according to SSE are almost the half of
the dispersion obtained using k-means.

V alue =
V alue−min
max−min

(13)

To verify results obtained using SSE in relation with ele-

Table 8: SSE Total (E10)
Datasets Incremental k-means D-Kmeans

A 608.1 160.8

BD 24.1 12.5

RD 0.017 0.0096

VH 18.3 12.07

A BD RD VH

In.K-means 1 0.04 0.0013 0.03

D-kmeans 0.26 0.205 0.00012 0.02

0

0.2

0.4

0.6

0.8

1

1.2

SS
E

Figure. 6: SSE Total for each dataset (Split process)

ments dispersion within clusters we use the Silhouette In-
dex with the same distribution of clusters, Figure 7 presents
different Silhouette Indexes for each dataset using both al-
gorithms: Incremental k-means and D-kmeans. Silhouette

A BD RD VH

In.K-means 0.28 0.41 0.91 0.5

D-kmeans 0.49 0.57 0.94 0.56

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SI
LH

O
U

ET
TE

IN
D

EX

Figure. 7: Silhouette Index for each dataset (Split process)

Index and SSE represented in Figure 6 and Figure 7, shows
that our D-kmeans algorithm outperforms the incremental k-
means in terms of stability of clusters. Clusters generated

from D-kmeans respect better the basic notion of clustering
(maximization of the coherence within cluster and minimiza-
tion of the similarity between clusters).
Next, we compare the needed time for the execution of Incre-
mental k-means versus that required from D-kmeans. From

0

200

400

600

800

1000

1200

1400

1600

1800

2000

A BD RD VH

R
u

n
ti

m
e

(s
)

Datasets

In.K-means

D-kmeans

Figure. 8: Run-time obtained by In.K-means and D-kmeans

the execution time shown in Figure 8, we can conclude that
D-kmeans split process uses less time than the Incremental k-
means, and the offset is proportional the size of the dataset.
Our split approach outperformed the Incremental k-means al-
gorithm in terms of processing performance.
Our split process outputs clusters that respects better basics
of clustering in term dispersion of elements within and be-
tween clusters. Besides, the quality of clustering, D-kmeans
split process uses less time during its execution. Merge pro-
cess evaluation
For the evaluation of the merge process, we use the same
datasets for the test of the split process but with different ini-
tialization of clusters number. At this level, we fix k=4. Ta-
ble 9 summarizes the number of elements within each cluster
with regards to the four used datasets. As used previously in

Table 9: Number of instances when k=4
Datasets A BD RD VH
Cluster 1 124351 209 199760 140558

Cluster 2 207723 163 59143 139227

Cluster 3 86492 129 44090 150273

Cluster 4 120817 98 131881 147841

the case of the evaluation of the split process, experiments of
the merge process will look also into the dispersion of ele-
ments within and between clusters. It follows the steps of the
merge process:

1. Calculate Centroids distances and Davis Bouldin Index
for each cluster

2. Verify clusters to merge.

3. Merge the two chosen clusters of each dataset.

Figure 9 and Figure 10 present centroids indexes and
Davis Bouldin Indexes for the VH datasets. We can notice
that cluster number 2 and cluster number 3 are going to be
merged as they are cluster that have lowest centroids distance
and highest Davis Bouldin Index. Table 10 contains clusters
to be merged of each dataset after they have undergone

Dynamic Algorithm based on split and merge for Data Streams Clustering 146

 0.0 C1 C2 C3 C4

 C1 0.0 *** *** ***

 C2 32.955 0.0 *** ***

 C3 34.198 906.423 0.0 ***

 C4 131.909 26.367 27.157 0.0

Figure. 9: Centroids Distance Index per cluster (VH dataset)

 0.0 C1 C2 C3 C4

 C1 0.0 *** *** ***

 C2 32.955 0.0 *** ***

 C3 34.198 906.423 0.0 ***

 C4 131.909 26.367 27.157 0.0

Figure. 10: Davis Bouldin Index matrix per cluster (VH
dataset)

Table 10: Clusters to be merge
Datasets A BD RD VH
Cluster 1 124351 209 199760 140558

Cluster 2 207723 163 59143 139227
Cluster 3 86492 129 44090 150273
Cluster 4 120817 98 131881 147841

the same procedure as clusters of VH dataset. The new
distribution of elements between clusters using D-kmeans is
presented in Table 11. Clusters presented in bold are those
who have been merged. Table 12 contains SSE for each

Table 11: Merged cluster using D-kmeans
Datasets A BD RD VH
Cluster 1 210843 209 199760 140558

Cluster 2 207723 163 59143 289500
Cluster 3 120817 227 175971 147841

dataset using Incremental k-means and D-kmeans. For a
better comprehension of the obtained result concerning SSE,
Figure 11 represents the normalized results in the Table 12.
We can notice in Figure 11 that elements within clusters

Table 12: SSE per dataset (E10) (merge process)
Datasets Incremental k-means Dynamic K-means

A 461.72 249,73

BD 51.05 48.12

RD 0.473 0.461

VH 17.43 15.59

obtained from D-kmeans merge process results in less
dispersed clusters than those generated from Incremental
k-means. To check the quality of clusters we evaluate
our merge process using the Silhouette index. Figure 12,
contains Silhouette Index for both algorithms on the four
used datasets for experiments. From Figure 12 we notice that
D-kmeans merge process gives better clusters quality than
Incremental k-means. The time needed to get final results
from D-kmeans is lower than that needed by Incremental

A BD RD VH

In.K-means 1 0.11 0.0047 0.04

D-kemans 0.54 0.1 0.0041 0.032

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SS
E

D-kmeans

Figure. 11: SSE per dataset (E10) (merge process)

A BD RD VH

In.K-means 0.31 0.28 0.8 0.57

D-kemans 0.39 0.35 0.88 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SI
LO

U
H

ET
TE

 IN
D

EX

D-kmeans

Figure. 12: Silhouette Index for each dataset (merge pro-
cess)

A BD RD VH

0

200

400

600

800

1000

1200

1400

1600

Datasets

R
u

n
ti

m
e

(s
)

in.k-means

D-kmeans

Figure. 13: Run-time for the merge process and D-kmeans

k-Means as shown in Figure 13. Also the execution time for
Incremental k-means grows faster with bigger dataset.

We conclude that our D-kmeans outperformed Incremental
K-means in terms of cluster quality either in the split process
or merge process. In addition the required run-time to get fi-
nal results is less with D-kmeans than Incremental K-means.

VI. Conclusion

We have proposed a new dynamic clustering algorithm, our
proposal is a dynamic technique based on the split and the
merge of clusters that have the most spreading out elements.
Experimental results demonstrate that our approach perform
better then the incremental k-means in term of element dis-

147 Ounali et al.

tribution between clusters. The split procedure reduces the
SSE for each cluster which provide a lower SSE (total) than
that given by incremental K-Means, also the merge process
gives better results in term of time and element dispersion
intra and inter clusters. As a result our proposed algorithm
out performed the incremental k-means algorithm especially
when it is related to large data sets.
In future work, we intend to use an heuristic to fix the initial
number of clusters. Furthermore, in our work we handled
clusters that their number were initialized randomly. Howev-
er, with the intention to extend our approach to handle bigger
size clusters for that we have to ameliorate the used criterion
for the split and merge. We intend to ameliorate the quality
of clusters by using fuzzy networks..

References

[1] A.Yadav and S.Dhingra, A REVIEW ON K-MEANS
CLUSTERING TECHNIQUE, International Journal of
Latest Research in Science and Technology, Volume 5,
Issue 4: Page No.13-16, July - August 2016.

[2] P.Y.Zhou and K.C.C.Chan, A Model-Based Multivari-
ate Time Series Clustering Algorithm, Springer Inter-
national Publishing Switzerland,W.-C. Peng et al. (Ed-
s.): PAKDD 2014 Workshops, LNAI 8643, pp. 805817,
2014.

[3] PI.Dalatu, A.Fitriantoa and Aida Mustaphab, Hybrid
distance functions for K-Means clustering algorithms,
Statistical Journal of the IAOS -1 (2017).

[4] T.Strauss and M.j.Von Maltitz, Generalising Ward’s
Method for Use with Manhattan Distances PLoS ONE
12(1): e0168288. 2017.

[5] V.B.Surya Prasath, H.Arafat, A.Alfeilatb,
O.Lasassmehb, A.B.A.Hassanatb .Distance and
Similarity Measures Effect on the Performance of
K-Nearest Neighbor Classifier A Review. Preprint
submitted to Elsevier. August 16, 2017.

[6] Li X, Han Q, Qiu B. (2017) A clustering algorithm with
affine space-based boundary detection. Applied Intelli-
gence 2:113

[7] Tong Q, Li X, Yuan B. (2017) A highly scalable
clustering scheme using boundary information. Pattern
Recognition Letters 89:17.

[8] R.R. Patil, A.Khan, Bisecting K-Means for Clustering
Web Log data, International Journal of Computer Ap-
plications, vol(16), 2015

[9] M.Cap, A.Prez, and J.A.Lozano, An efficient K-means
clustering algorithm for massive data, JOURNAL OF
LATEX CLASS FILES, VOL. 14, NO. 8, August 2015.

[10] J. Han and M. Kamber, Fast kernel classifiers with on-
line and active learning, Data mining concepts and tech-
niques (2nd ed.), vol. 6, pp. 15791619, 2006.

[11] R. Mall, A. Ahmad, and J. Lamirel, Comportemen-
t comparatif des methodes de clustering incrmentales

et non incrmentales sur les donnes textuelles htrogenes,
(2014).

[12] J.Bao, W. Wang, T.Yang and G.Wu, An incremental
clustering method based on the boundary profile. PLoS
ONE 13(4), (2018).

[13] Y. Zhanga, K. Lib, H. Guc, and D. Yanga, Adaptive
split-andmerge clustering algorithm for wireless sensor
networks, International Workshop on Information and
Electronics Engineering (IWIEE) (2012).

[14] M. Savaresi, L. Boley, D.S. Bittanti, and G. Gazzaniga,
Choosing the cluster to split in bisecting divisive clus-
tering algorithms.

[15] k.Jain and C. Dubes, Algorithms for clustering data,
Prentice-Hall advance reference series, (1988).

[16] T. Thinsungnoena, N. Kaoungkub, P. Durongdumron-
chaib, K. Kerdprasopb, and N. Kerdprasopb, the clus-
tering validity with silhouette and sum of squared er-
rors, Proceedings of the 3rd International Conference
on Industrial Application Engineering, 2015.

[17] P. I.Brahmi and S. Ben Yahia, Dtection des anomalies
base sur le clustering, (2014)

[18] A. Yadav and G. Singh, Incremental K-means Cluster-
ing Algorithms: A Review, International Journal of Lat-
est Trends in Engineering and Technology (IJLTET),
2015, vol. 5, pp. 136-140

[19] J. Bao and W. Wang and G.Wu, An incremental cluster-
ing method based on the boundary profile, PLOS ONE,
2018, vol. 13, pp. 1-19

[20] J.A. Silva, E. R. Faria, R.C. Barros, E. R. Hruschka and
A.C. P. L. F. De Carvalho, Data Stream Clustering: A
Survey, Journal of the ACM, 2014, Vol. 5, pp. 1-37

[21] K.R. Clarke, M.G. Chapman, P.J. Somerfield and
H.R. Needham, Dispersion-based weighting of species
countsin assemblage analyses, 5th International Con-
ference on Leadership, Technology, Innovation and
Business Management, 2006, Vol. 320, pp. 11-27

[22] M.F Al-Saleh and A.E Yousif, Properties of the Stan-
dard Deviation that are Rarely Mentioned in Class-
rooms, AUSTRIAN JOURNAL OF STATISTICS,
2009,vol. 38, pp. 193-202

[23] M. Ghribi, P. Cuxac, J.C. Lamirel and A. Lelu, Mesures
de qualite de clustering de documents : Prise en compte
de la distribution des mots cls, in proceedings of the
10th Conference Internationale Francophone, 2011,
vol. 10, pp. 1-14

[24] S. Mehta, X. Shen, J. Gou and D. Niu, A New Nearest
Centroid Neighbor Classifier Based on K Local Mean-
s Using Harmonic Mean Distance, Information, 2018,
vol. 9, pp. 234-250

[25] G. Songtao, D.X. Luna, S. Divesh and Z. Remi, Record
linkage with uniqueness constraints and erroneous val-
ues, Proceedings of the VLDB Endowment, vol. 3, pp.
417-428, 2010.

Dynamic Algorithm based on split and merge for Data Streams Clustering 148

[26] C.Ounali, F. BenRejeb and K. N.Ferchichi, Incremental
k-means based on split technique, International Confer-
ence on Intelligent Systems Design and Applications.
ISDA 2018, AISC 941, pp. 110, 2020.

[27] J. MacQueen, Proceedings of the Fifth Berkeley Sym-
posium on Mathematical Statistics and Probability,
Some methods for classification and analysis of mul-
tivariate observations, 1967, vol. 1, pp. 281-297.

[28] A. Shafeeq and K.S. Haresha, Dynamic clustering of
data with modified k-means algorithm, in proceed-
ings of the International conference on information and
computer networks, 2012, vol. 27, pp. 221-225.

[29] A. Abuarqouba and M. Hammoudehb and B. Adebisi
and S. Jabbar and A. Bounceur and H. Al-Bashar, Dy-
namic clustering and management of mobile wireless
sensor networks, Computer Networks, 2017, vol. 117,
pp. 62-75.

[30] H. Chan and A. Guerqin and M. Sozio, In proceedings
of the Fully Dynamic k -Center Clustering, World Wide
Web Conference, 2018,pp. 579-587.

Author Biographies

Chedi Ounali is a doctoral student at Tunis University of
Tunisia. His research interests are artificial intelligence, data
mining, and machine learning. Ounali received a master de-
gree in Business Computing from Tunis university of Tunisi-
a. He is a member of BESTMOD Laboratory. Contact him
at: chedy.ounelly@gmail.com.

Fahmi Ben Rejab is an associate professor at Tunis Univer-
sity of Tunisia. His research interests are medical informatic-
s, artificial intelligence, data mining, and machine learning.
Ben Rejab received a PhD in Business Computing from Tu-
nis university of Tunisia. He is a member of BESTMOD
Laboratory. Contact him at: fahmi.benrejab@gmail.com.

Kaouther Nouira is an associate professor at Tunis Univer-
sity of Tunisia. Her research interests are medical informatic-
s, artificial intelligence, and deep learning. Nouira received a
PhD in Business Computing from Tunis university of Tunisi-
a. She is Head of the E-Health Research Team at BESTMOD
Laboratory. Contact her at: kaouther.nouira@planet.tn.

