
 ACO-PSO Optimization for Solving TSP Problem with

GPU Acceleration

Olfa Bali
1
, Walid Elloumi

1
, Ajith Abraham

2
 and Adel M. Alimi

1

1REGIM-Lab: Research Groups on Intelligent Machines,

University of Sfax, National Engineering School of Sfax (ENIS)

BP 1173, Sfax, 3038, Tunisia
2Intelligence Research Labs (MIR Labs), P.O. Box 2259, Auburn, WA 98071-2259, USA

bali.olfa@gmail.com

{walid.elloumi, ajith.abraham, adel.alimi}@ieee.org

Abstract. In this paper, we present a novel approach named "ACO-PSO-TSP-

GPU" to run PSO and ACO on Graphical Processing Units (GPUs) and applied

to TSP (Parallel-PSO&ACO-A-TSP). Both algorithms are implemented on

GPUs. Well-known benchmark problems for many heuristic and meta heuristic

algorithms presented by Travelling Salesman Problem (TSP) are known as NP

hard complex problems.TSP was investigated using classical approaches as

well as intelligent techniques employing Particle Swarm Optimization (PSO)

and Ant Colony Optimization (ACO). Parallel computing is well suited to the

execution of nature and bio-inspired algorithms due to the rapidity of parallel

implementation. Results show better performance optimization when using

parallelism compared to results using sequential CPU implementation.

Keywords: PSO, ACO, TSP, GPU, Optimization, Parallelism.

1 Introduction

In the field of Engineering, the optimum solution of a problem is defined by using

optimality criteria.

Swarm intelligence techniques are bio-inspired methods, where group behavior is

used to solve a problem based on the individualities of its members.

Particle swarm optimization (PSO), is a branch of Swarm intelligence used for

solving many engineering optimization problems. Among the stochastic global

optimization techniques initially designed for non-linear continuous function

optimization, Swarm Intelligence algorithms offer a number of attractive features,

global search capability and easy implementation. Since 1995, Kennedy and Eberhart

developed a meta-heuristic population based on global optimization called PSO [1],

presented in figure 1.

PSO suffer from premature convergence for small population size but can be

improved by increasing the population. Fortunately, the PSO is very easy to be

parallelized since the particles do not depend on each other while moving in the

search space. Many approaches simulate multiple particles at a time or propose

multiple swarm versions of the PSO [2]. The task of calculation can be heavy and the

speed of the course PSO can be seen as slow as the operation of the PSO algorithm

requires a number of iterations and a stop condition; which are formed in a sequential

manner on the processor.

Fig.1. Bird flocks

Ant systems [3] are inspired from the real behavior of real ants and are employed

for combinatorial optimization problems. The basics of ant systems are founded on

the theory of self-organizing systems [4] and the notion of stigmergy is presented in

figure 2.

Fig.2. The collective behavior changes

In [5], the authors have given an overview on the state of the art of the theoretical

analysis of Ant Colony Optimization (ACO) algorithm. On a second stage, PSO is

coupledwith ACO for combinatory optimization.

Elloumi et al. [6] have presented an improved ACO algorithm supervised by PSO

to solve continuous optimization problems. PSO algorithms are used to resolve

continuous optimization problems while ACO algorithms are used for the discrete

ones.

In [7], the authors have studied the multi-objective Particle Swarm Optimization

(MOPSO) and found that more the number of the swarm increases more the accuracy

of object achievement is increased.

In [8], the authors have proposed an approach that consists in combining fuzzy

logic with ant colony Optimization (FACO) and fuzzy particle swarm optimization

(FPSO) for solving TSP optimization problems.

In [9], the authors have proposed an optimization technique using multi-objective

PSO (MOPSO) and FACO. This technique consists in combining these two methods.

The objective of this combination is to reduce computation time and getting the

shortest path.

In [10], the authors have presented an improved hybrid method (PSO–ACO) using

the TSP benchmarks to validate our results.

During the last years, the trend was to use and improve graphics processing units

(GPUs) as aco-processor. Designed mainly for graphics and game industry, GPUs

have attracted many researchers due to its arithmetic computation power [11].

The paper is organized as follows. In section 2, we define TSP problem. In

Section 3, we present the basics of NVIDIA GPU based computing. Our system is

illustrated in section 4. Implementations of two algorithms and a number of

experiments are done on four benchmarks with details of experiments and the

reported results are exhibited in section 5. Finally, we conclude our paper in section 6.

2 The TSP problem

TSP, the traveling salesman problem, which may be defined as follows: at first we

initialize (n) cities that must be visited. Initially we start from a city chosen randomly

and then returns to the starting city. The objective is to determine the overall distance

and visit every city just once with respect to fixed start/end locations [12].

An illustration of this problem with 5 cities is given in figure3; it shows two

possible solutions, one in red and the other in green color. The two routes don’t have

the same length. A travelling salesman will choose the shortest path to reduce the cost

of the travel. However, the TSP is said NP-complete. In fact, for n cities the number

of possible route is equal to (n-1)!/2.

Fig.3. TSP possible solutions for a simplified cities representation, here the number of

cities is limited to 5

3 NVIDIA GPU Architecture

GPU processors are supported by the image processing and 3D data, as well as

display. We distinct two main types of memory: local memory and global memory.

This distinction allows memory spaces clearly separate memory areas read-only

(constant, texture), local to a thread (local), read / write (global), short latency and

deterministic (shared). The latency of each type of memory that can be estimated

precisely statically. This parallel architecture, composed of a large number of

calculations units, heavily exploit modes of SIMD (Single Instruction Multiple Data) /

MIMD (Multiple Instruction Multiple Data) [13], allowing the simultaneous

execution of many parts code. Parallelism can be achieved by using the concept of

threads, i.e. lightweight processes that can run in parallel. When running a program,

several thread groups will be spears in parallel to perform operations on a large data

set.

The CUDA language for Compute Unified Device Architecture is available to the

public since 2007. CUDA is a programming language similar to C / C ++ to exploit

the capabilities of GPU and material resources, particularly in regard to memory

management and organization of treatment.

The principle of treatment of a problem on a highly parallel architecture is to break

the problem into smaller problems that can be solved in parallel.Thus the partition of

a wide array of data is performed by its decomposition into multiple blocks. Each

block is run independently in parallel and the elements of each block are executed

cooperatively in parallel. Figure 4 shows the decomposition of a set of data in a grid

of 2 × 2 blocks are decomposed themselves in 4 × 4 elements.

Fig.4 Decomposition of blocks of grid data, where each block contains a number of

elements executed in parallel. The term defines the Host CPU and Device term corresponds to

the GPU. The size used for the definition of the grid is two-dimensional block-level and

threads.

All threads contained in a grid are sent to execution by a kernel, which can be

defined as a simple function or program.To manage a large number of concurrent

threads that can cooperate with each other, the architecture of graphics cards

introduced threads of cooperation sets, also known as blocks of threads or thread

blocks in CUDA terminology.

4 GPU-PSO and ACO-A-TSP

In this section, we will study our approach having two essential parts. The first part

explain GPU PSO-A to TSP while the second part explain GPU ACO-A to TSP.

PSO and ACO optimization require high CPU computation resources. That’s

explain the necessity to use GPU accelerated system.

4.1 GPU PSO

The figure 5 shows roughly the Graphical Process Unit - Particle Swarm Optimization

Applied to Travelling Salesman Problem.

Our goal is to cover all cities (designated nodes) once (if the particle passes through

the city i to j it does not cross the town in the other direction, from j to i). Finally, the

particle returns to the starting city, so we get a cycle.

The “gpuArray()” function allows copying data from the memory of the CPU to

the GPU memory brings us to manipulate the table on the GPU memory.

First, the global best (Pig) and local best (Pil) are elected, then we update the positions

and velocities of the particles. These particles are assigned for N data and N threads.

We had to repeat these steps until reaching the maximum number of iterations; it is

assigned to each node. This allows us to obtain an archive, according to the latter; we

can make a comparison between the different obtained paths. We choose the best way

in terms of its execution time. Finally, we return the GPU data to the CPU through the

control “gather ()”.

4.2 GPU ACO

The figure 6 illustrates the diagram of the Graphical Process Unit - Ant Colony

Optimization Applied to Travelling Salesman Problem.

The operation of the classic ACO is based on parameters that are often defined by

the user of the algorithm. Thus, found settings that are appropriate for a problem are

not suitable for other problems, forcing the user to perform numerous tests to define

the parameters.

After coping data to GPU memory, the algorithm starts by assigning a city for each

ant until all cites are affected to ants. When ants return to the starting city the amount

of pheromone is updated in a cycle. Then, we Assign each node a thread and repeat

these steps until reaching the maximum number of iteration. If we arrive at stopping

criterion the concept of pheromone placing procedure guides the building procedure

to each thread. The solutions to the intermediate partial problems are seen that we

display the best lap, otherwise we return in step 2.

The dynamic memory structure that is inspired by the movement of the ant k for

each iteration of the algorithm, see figure 6.

5 Experimental Results

We are based on well known benchmarks to validate the developed algorithms [10].

We have chosen in this paper from the benchmarks four TSP problems which consist

in finding the optimal path to travel between graph cities of 22, 29, 30 and 48 nodes.

In our approach, we begin by resetting the parameters feature of PSO applied to the

TSP; to say the number of nodes contained in a graph, a weight of every particle and

the coefficients of acceleration. The maximum number of iterations in this case was

taken as 1000 iterations. The number of used particles depends on the graph.

Fig.5.The process of GPU-PSO-A-TSP

GPU

Choose the shorter path

Return from GPU to CPU using gather

Start

- Initialize parameter of PSO to TSP

- n_max iterations

- Number of particles

- Fitness functions

- Initialize positions and velocities

Transfer data function from CPU to GPU using

gpuArray

Elect Pig

Elect Pil

Update velocities

Update positions

Assigned for N data N thread

Lp

End

Fig.6. The process of GPU-ACO-A-TSP

Return from GPU to CPU using gather

Assigned for N data N thread

End

Update pheromone level using the tour costfor

each ant

Return to original cities

Print best tour

Stopping

More

Cities

yes

no

Start

- Initialize parameter of ACO to TSP

- n_maxiterations

- Number of particles

- Put each ant in a city randomly selected

Transfer data function from CPU to GPU

using gpuArray

Take the next city (for each ant)

For each ant

GPU

For example, for a graph with 22 cities, the possible number of particles of the

population to use in this first test is 22; the second test is 70 for the third test is 100.

We had 1000 iteration because we have tests by using 2000 and 3000 iterations.

Our method consists in using 1000 iterations because the number and the time of

the cycle are proportional among iterations to avoid the wasting

Our approaches GPU Optimization Swarm of particles and Ant Colony

Optimization applied to the TSP (GPU-PSO ACO-A-TSP) is coded in Matlab 2014b

and executed on a processor Intel ® Core T i7-4700MQ (6MB cache memory, 3.40

GHz) PC with memory of 12GB and NVIDIA GeForce 480M and Windows 7.

There are many parameters used for our approach. The size of the population,

which we are three times going to increase, is the number of knots of the social and

cognitive probability, having c1 and c2, defined as c1 = c2 = 2. The mass of inertia w

is taken as 0,9 and the maximum of the speed live taken as 100 and the dimension of

the space as 10. Every cycle of TSP is executed during five replications and 1000

iterations. Both has and ß control the relative importance of pheromone trail and the

distance between cities TSP where has = 1.5, ß = 2 Refers to the speed of

pheromone evaporation = 0,7. Each test TSP is performed for 5 replications

iterations and 1000.

5.1 TSP solved by PSO and GPU PSO

In table 1, N refers to the number of nodes, CPU-T.PSO refers to the best time for

PSO (per seconds) and CPU-L.PSO refers to CPU-PSO the length for PSO. GPU used

the same indices.

In the same table, we have tried to represent the different numbers of nodes, after

that, we have attempted to increase the population of PSO keeping the same number

of nodes. Thus, It was found from number 22 to 48 nodes, that the route of the

shortest path decreases when the number of PSO population increases. Therefore,

when the execution time increases, the number of (CPU-GPU) PSO population

increases too.

5.2 TSP solved by ACO and GPU ACO

In table 2, N refers to the number of nodes, T.ACO refers to the best time for ACO

(per seconds), L.ACO is the best Length for ACO.

In the second table we have tried to represent the different numbers of nodes. After

that we have tried to increase the number of people of ACO keeping the same number

of nodes. In this Table it was found that the route of the shortest path decreases when

the number of ACO population increases. When the execution time increases the

number of population increases too. The execution time depends on the complexity of

the TSP as well.

Now comparing the results of the two tables, we notice that the results of the

shortest path of (CPU-GPU) ACO are better compared to the (CPU-GPU) PSO, but

the best performance is that of (CPU-GPU) PSO compared to that of (CPU-GPU)

ACO time.

Compared to previous works ACO-A-TCP and PSO-A-TCP [10], our algorithms

GPU-ACO-A-TSP and GPU-PSO-A-TSP implemented on GPU have the advantage

of reducing the computational time for solving TSP problems.

Table 1: PSO and GPU PSO for TSP

 CPU GPU

N
Size of population

of PSO

T.PSO

(sec)
L.PSO (Km)

T.PSO

(sec)
L.PSO (Km)

22

22 0.1406 90.6884 0.0848 90.6884

70 0.4556 90.4220 0.2791 90.4220

100 0.5707 89.4898 0.3950 89.4898

29

29 0.4181 1.1761e+004 0.2346 1.1761e+004
70 0.9632 1.0900e+004 0.5831 1.0900e+004

100 1.2177 1.0472e+004 0.7763 1.0472e+004

30

30 0.3577 584.0341 0.2736 584.0341

70 0.7334 562.0160 0.5969 562.0160

100 1.1059 545.7844 0.8535 545.7844

48

48 3.0961 4.5973e+004 0.6366 4.5973e+004

70 4.3249 4.4654e+004 0.9269 4.4654e+004

100 4.8480 4.1158e+004 1.4414 4.1158e+004

Table 2: ACO and GPU ACO for TSP

 CPU GPU

N
Size of population

of ACO

T.ACO

(sec)
L.ACO (Km)

T.ACO

(sec)
L.ACO (Km)

22

22 0.2438 77.8000 0.0930 77.8000

70 0.4969 77.1834 0.2964 77.1834

100 0.6866 76.1212 0.4223 76.1212

29

29 0.4190 1.1621e+004 0.2602 1.1621e+004

70 1.0881 1.0530e+004 0.6132 1.0530e+004

100 1.3713 1.0432e+004 0.9036 1.0432e+004

30

30 0.3724 537.9874 0.2933 537.9874

70 0.7652 495.5985 0.6699 495.5985

100 1.4225 491.7651 1.0160 491.7651

48

48 4.0005 4.2086e+004 1,1433 4.2086e+004

70 4.5047 4.1420e+004 1,6658 4.1420e+004

100 6.8139 4.0585e+004 2.3992 4.0585e+004

6 Conclusion

In this paper we have given two approaches the GPU-PSO–A-TSP and GPU-ACO–

A-TSP. We have used PSO and ACO, meta-heuristics optimization algorithms, for

resolving TSP problem. We have also used the parallel GPU programming model to

reduce the PSO and ACO algorithms computational time.

According to the results of the two tables, we notice that the results of the shortest

path of (CPU-GPU) ACO are better compared to the (CPU-GPU) PSO, but the best

performance is that of (CPU-GPU) PSO compared to that of (CPU-GPU) ACO time.

For this reason, we have achieved hybridization between PSO and ACO using the

GPU based on [14].

Acknowledgments
The authors would like to acknowledge the financial support of this work by grants

from General Direction of Scientific Research (DGRST), Tunisia, under the ARUB

program.

References

1. J. Kennedy and R. Eberhart, "Particle Swarm Optimization".In IEEE International

Conference on Neural Networks, vol. 4, 1995, pp. 1942–1948.

2. T. Hendtlass, "WoSP: A Multi-optima Particle Swarm Algorithm".In The IEEE Congress on

Evolutionary Computation, vol. 1, 2005, pp. 727–734.

3. M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimization by a colony of

cooperating agents., IEEE Trans. Syst. Man Cybern. B Cybern. 26 (February (2)) (1996)

29–41.

4. S. Garnier, J. Gautrais, G. Theraulaz, The biological principles of swarm intelligence, in:

Swarm Intelligence, 2007.

5. W. Elloumi and Adel M. Alimi, "Combinatory optimization of ACO and PSO".In:

International Conference on Metaheuristique and Nature Inspired Computing, October,

2008, pp. 1–8.

6. W. Elloumi, N. Rokbani and Adel M. Alimi, "Ant Supervised By PSO".In: International

Symposium on Computational Intelligence and Intelligent Informatics, October, 2009, pp.

161–166.

7. W. Elloumi and Adel M. Alimi, "A More Efficient MOPSO for Optimization". In: The eight

ACS/IEEE International Conference on Computer Systems and Applications, AICCSA,

May, 2010, pp. 1–7.

8. W. Elloumi, N. Baklouti, A. Abraham and Adel M. Alimi, "Hybridization of fuzzy PSO and

fuzzy ACO applied to TSP". In: 13th International Conference on Hybrid Intelligent

Systems (HIS), December, 2013, pp. 106–111.

9. W. Elloumi, N. Baklouti, A. Abraham and Adel M. Alimi, "The multi-objective

hybridization of particle swarm optimization and fuzzy ant colony optimization".Journal of

Intelligent and Fuzzy Systems, http://dx.doi.org/10.3233/IFS-131020, 2014, pp. 515-525.

10. W. Elloumi, H. El Abed, A. Abraham and Adel M. Alimi,"A comparative study of the

improvement of performance using a PSO modified by ACO applied to TSP". Journal of

Applied Soft Computing, 2014, pp. 234-241.

11. D. B. Kirk and W.-m. W. Hwu, "Programming Massively Parallel Processors: A Hands-on

Approach". Morgan Kaufmann, 2010.

12. B. Gavish and S. C. Graves."The travelling salesman problem and related problems", 1978.

13. M. J. Flynn. "Some computer organizations and their effectiveness". IEEE Transactions on

Computers, c-21, September 1972.

14. O. Bali, W. Elloumi, A. Abraham and Adel M. Alimi, "GPU PSO and ACO Applied to TSP

for Vehicle Security Tracking”. Journal of Information Assurance and Security, 2016, pp.

369-384.

http://dx.doi.org/10.3233/IFS-131020
http://dblp.uni-trier.de/pers/hd/a/Abraham:Ajith

