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Abstract. In this paper, we present a novel approach named "ACO-PSO-TSP-

GPU" to run PSO and ACO on Graphical Processing Units (GPUs) and applied 

to TSP (Parallel-PSO&ACO-A-TSP). Both algorithms are implemented on 

GPUs. Well-known benchmark problems for many heuristic and meta heuristic 

algorithms presented by Travelling Salesman Problem (TSP) are known as NP 

hard complex problems.TSP was investigated using classical approaches as 

well as intelligent techniques employing Particle Swarm Optimization (PSO) 

and Ant Colony Optimization (ACO). Parallel computing is well suited to the 

execution of nature and bio-inspired algorithms due to the rapidity of parallel 

implementation. Results show better performance optimization when using 

parallelism compared to results using sequential CPU implementation. 
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1   Introduction 

In the field of Engineering, the optimum solution of a problem is defined by using 

optimality criteria. 

Swarm intelligence techniques are bio-inspired methods, where group behavior is 

used to solve a problem based on the individualities of its members. 

Particle swarm optimization (PSO), is a branch of Swarm intelligence used for 

solving many engineering optimization problems. Among the stochastic global 

optimization techniques initially designed for non-linear continuous function 

optimization, Swarm Intelligence algorithms offer a number of attractive features, 

global search capability and easy implementation. Since 1995, Kennedy and Eberhart 

developed a meta-heuristic population based on global optimization called PSO [1], 

presented in figure 1. 

PSO suffer from premature convergence for small population size but can be 

improved by increasing the population. Fortunately, the PSO is very easy to be 

parallelized since the particles do not depend on each other while moving in the 

search space. Many approaches simulate multiple particles at a time or propose 

multiple swarm versions of the PSO [2]. The task of calculation can be heavy and the 



speed of the course PSO can be seen as slow as the operation of the PSO algorithm 

requires a number of iterations and a stop condition; which are formed in a sequential 

manner on the processor. 

 

Fig.1. Bird flocks 

Ant systems [3] are inspired from the real behavior of real ants and are employed 

for combinatorial optimization problems. The basics of ant systems are founded on 

the theory of self-organizing systems [4] and the notion of stigmergy is presented in 

figure 2. 

 

Fig.2. The collective behavior changes 

In [5], the authors have given an overview on the state of the art of the theoretical 

analysis of Ant Colony Optimization (ACO) algorithm. On a second stage, PSO is 

coupledwith ACO for combinatory optimization. 

Elloumi et al. [6] have presented an improved ACO algorithm supervised by PSO 

to solve continuous optimization problems. PSO algorithms are used to resolve 

continuous optimization problems while ACO algorithms are used for the discrete 

ones. 

In [7], the authors have studied the multi-objective Particle Swarm Optimization 

(MOPSO) and found that more the number of the swarm increases more the accuracy 

of object achievement is increased. 

In [8], the authors have proposed an approach that consists in combining fuzzy 

logic with ant colony Optimization (FACO) and fuzzy particle swarm optimization 

(FPSO) for solving TSP optimization problems. 

In [9], the authors have proposed an optimization technique using multi-objective 

PSO (MOPSO) and FACO. This technique consists in combining these two methods. 



The objective of this combination is to reduce computation time and getting the 

shortest path.  

In [10], the authors have presented an improved hybrid method (PSO–ACO) using 

the TSP benchmarks to validate our results. 

During the last years, the trend was to use and improve graphics processing units 

(GPUs) as aco-processor. Designed mainly for graphics and game industry, GPUs 

have attracted many researchers due to its arithmetic computation power [11]. 

The paper is organized as follows. In section 2, we define TSP problem. In 

Section 3, we present the basics of NVIDIA GPU based computing. Our system is 

illustrated in section 4. Implementations of two algorithms and a number of 

experiments are done on four benchmarks with details of experiments and the 

reported results are exhibited in section 5. Finally, we conclude our paper in section 6. 

2   The TSP problem 

TSP, the traveling salesman problem, which may be defined as follows: at first we 

initialize (n) cities that must be visited. Initially we start from a city chosen randomly 

and then returns to the starting city. The objective is to determine the overall distance 

and visit every city just once with respect to fixed start/end locations [12]. 

An illustration of this problem with 5 cities is given in figure3; it shows two 

possible solutions, one in red and the other in green color. The two routes don’t have 

the same length. A travelling salesman will choose the shortest path to reduce the cost 

of the travel. However, the TSP is said NP-complete. In fact, for n cities the number 

of possible route is equal to (n-1)!/2.  

 

 

Fig.3. TSP possible solutions for a simplified cities representation, here the number of 

cities is limited to 5 

3   NVIDIA GPU Architecture 

GPU processors are supported by the image processing and 3D data, as well as 

display. We distinct two main types of memory: local memory and global memory. 

This distinction allows memory spaces clearly separate memory areas read-only 

(constant, texture), local to a thread (local), read / write (global), short latency and 

deterministic (shared). The latency of each type of memory that can be estimated 

precisely statically. This parallel architecture, composed of a large number of 



calculations units, heavily exploit modes of SIMD (Single Instruction Multiple Data) / 

MIMD (Multiple Instruction Multiple Data) [13], allowing the simultaneous 

execution of many parts code. Parallelism can be achieved by using the concept of 

threads, i.e. lightweight processes that can run in parallel. When running a program, 

several thread groups will be spears in parallel to perform operations on a large data 

set. 

The CUDA language for Compute Unified Device Architecture is available to the 

public since 2007. CUDA is a programming language similar to C / C ++ to exploit 

the capabilities of GPU and material resources, particularly in regard to memory 

management and organization of treatment.  

The principle of treatment of a problem on a highly parallel architecture is to break 

the problem into smaller problems that can be solved in parallel.Thus the partition of 

a wide array of data is performed by its decomposition into multiple blocks. Each 

block is run independently in parallel and the elements of each block are executed 

cooperatively in parallel. Figure 4 shows the decomposition of a set of data in a grid 

of 2 × 2 blocks are decomposed themselves in 4 × 4 elements. 

 

 
 

Fig.4 Decomposition of blocks of grid data, where each block contains a number of 

elements executed in parallel. The term defines the Host CPU and Device term corresponds to 

the GPU. The size used for the definition of the grid is two-dimensional block-level and 

threads. 

 

All threads contained in a grid are sent to execution by a kernel, which can be 

defined as a simple function or program.To manage a large number of concurrent 

threads that can cooperate with each other, the architecture of graphics cards 

introduced threads of cooperation sets, also known as blocks of threads or thread 

blocks in CUDA terminology.  

4   GPU-PSO and ACO-A-TSP 

In this section, we will study our approach having two essential parts. The first part 

explain GPU PSO-A to TSP while the second part explain GPU ACO-A to TSP. 

PSO and ACO optimization require high CPU computation resources. That’s 

explain the necessity to use GPU accelerated system. 



4.1   GPU PSO 

The figure 5 shows roughly the Graphical Process Unit - Particle Swarm Optimization 

Applied to Travelling Salesman Problem. 

Our goal is to cover all cities (designated nodes) once (if the particle passes through 

the city i to j it does not cross the town in the other direction, from j to i). Finally, the 

particle returns to the starting city, so we get a cycle. 

The “gpuArray()” function allows copying data from the memory of the CPU to 

the GPU memory brings us to manipulate the table on the GPU memory. 

First, the global best (Pig) and local best (Pil) are elected, then we update the positions 

and velocities of the particles.  These particles are assigned for N data and N threads. 

We had to repeat these steps until reaching the maximum number of iterations; it is 

assigned to each node. This allows us to obtain an archive, according to the latter; we 

can make a comparison between the different obtained paths. We choose the best way 

in terms of its execution time. Finally, we return the GPU data to the CPU through the 

control “gather ()”. 

4.2   GPU ACO 

The figure 6 illustrates the diagram of the Graphical Process Unit - Ant Colony 

Optimization Applied to Travelling Salesman Problem. 

The operation of the classic ACO is based on parameters that are often defined by 

the user of the algorithm. Thus, found settings that are appropriate for a problem are 

not suitable for other problems, forcing the user to perform numerous tests to define 

the parameters.  

After coping data to GPU memory, the algorithm starts by assigning a city for each 

ant until all cites are affected to ants. When ants return to the starting city the amount 

of pheromone is updated in a cycle. Then, we Assign each node a thread and repeat 

these steps until reaching the maximum number of iteration. If we arrive at stopping 

criterion the concept of pheromone placing procedure guides the building procedure 

to each thread. The solutions to the intermediate partial problems are seen that we 

display the best lap, otherwise we return in step 2. 

The dynamic memory structure that is inspired by the movement of the ant k for 

each iteration of the algorithm, see figure 6.  

5   Experimental Results 

We are based on well known benchmarks to validate the developed algorithms [10]. 

We have chosen in this paper from the benchmarks four TSP problems which consist 

in finding the optimal path to travel between graph cities of 22, 29, 30 and 48 nodes.  

In our approach, we begin by resetting the parameters feature of PSO applied to the 

TSP; to say the number of nodes contained in a graph, a weight of every particle and 

the coefficients of acceleration. The maximum number of iterations in this case was 

taken as 1000 iterations. The number of used particles depends on the graph.  

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.The process of GPU-PSO-A-TSP 
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Fig.6. The process of GPU-ACO-A-TSP 
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For example, for a graph with 22 cities, the possible number of particles of the 

population to use in this first test is 22; the second test is 70 for the third test is 100. 

We had 1000 iteration because we have tests by using 2000 and 3000 iterations. 

Our method consists in using 1000 iterations because the number and the time of 

the cycle are proportional among iterations to avoid the wasting 

Our approaches GPU Optimization Swarm of particles and Ant Colony 

Optimization applied to the TSP (GPU-PSO ACO-A-TSP) is coded in Matlab 2014b 

and executed on a processor Intel ® Core T i7-4700MQ (6MB cache memory, 3.40 

GHz) PC with memory of 12GB and NVIDIA GeForce 480M and Windows 7.  

There are many parameters used for our approach. The size of the population, 

which we are three times going to increase, is the number of knots of the social and 

cognitive probability, having c1 and c2, defined as c1 = c2 = 2. The mass of inertia w 

is taken as 0,9 and the maximum of the speed live taken as 100 and the dimension of 

the space as 10. Every cycle of TSP is executed during five replications and 1000 

iterations. Both has and ß control the relative importance of pheromone trail and the 

distance between cities TSP where has   = 1.5, ß = 2 Refers to the speed of 

pheromone evaporation   = 0,7. Each test TSP is performed for 5 replications 

iterations and 1000. 

5.1   TSP solved by PSO and GPU PSO 

In table 1, N refers to the number of nodes, CPU-T.PSO refers to the best time for 

PSO (per seconds) and CPU-L.PSO refers to CPU-PSO the length for PSO. GPU used 

the same indices. 

In the same table, we have tried to represent the different numbers of nodes, after 

that, we have attempted to increase the population of PSO keeping the same number 

of nodes. Thus, It was found from number 22 to 48 nodes, that the route of the 

shortest path decreases when the number of PSO population increases. Therefore, 

when the execution time increases, the number of (CPU-GPU) PSO population 

increases too.  

5.2   TSP solved by ACO and GPU ACO 

In table 2, N refers to the number of nodes, T.ACO refers to the best time for ACO 

(per seconds), L.ACO is the best Length for ACO. 

In the second table we have tried to represent the different numbers of nodes. After 

that we have tried to increase the number of people of ACO keeping the same number 

of nodes. In this Table it was found that the route of the shortest path decreases when 

the number of ACO population increases. When the execution time increases the 

number of population increases too. The execution time depends on the complexity of 

the TSP as well. 

Now comparing the results of the two tables, we notice that the results of the 

shortest path of (CPU-GPU) ACO are better compared to the (CPU-GPU) PSO, but 

the best performance is that of (CPU-GPU) PSO compared to that of (CPU-GPU) 

ACO time.  



Compared to previous works ACO-A-TCP and PSO-A-TCP [10], our algorithms 

GPU-ACO-A-TSP and GPU-PSO-A-TSP implemented on GPU have the advantage 

of reducing the computational time for solving TSP problems. 

 
 

Table 1: PSO and GPU PSO for TSP 

 CPU GPU 

N 
Size of population 

of PSO 

T.PSO 

(sec) 
L.PSO (Km) 

T.PSO 

(sec) 
L.PSO (Km) 

 

22 

22 0.1406 90.6884 0.0848 90.6884 

70 0.4556 90.4220 0.2791 90.4220 

100 0.5707 89.4898 0.3950 89.4898 

29 

29 0.4181 1.1761e+004 0.2346 1.1761e+004 
70 0.9632 1.0900e+004 0.5831 1.0900e+004 

100 1.2177 1.0472e+004 0.7763 1.0472e+004 

30 

30 0.3577 584.0341 0.2736 584.0341 

70 0.7334 562.0160 0.5969 562.0160 

100 1.1059 545.7844 0.8535 545.7844 

48 

48 3.0961 4.5973e+004 0.6366 4.5973e+004 

70 4.3249 4.4654e+004 0.9269 4.4654e+004 

100 4.8480 4.1158e+004 1.4414 4.1158e+004 
 

 

 

 

Table 2: ACO and GPU ACO for TSP 

 CPU GPU 

N 
Size of population 

of ACO 

T.ACO 

(sec) 
L.ACO (Km) 

T.ACO 

(sec) 
L.ACO (Km) 

 

22 

22 0.2438 77.8000 0.0930 77.8000 

70 0.4969 77.1834 0.2964 77.1834 

100 0.6866 76.1212 0.4223 76.1212 

29 

29 0.4190 1.1621e+004 0.2602 1.1621e+004 

70 1.0881 1.0530e+004 0.6132 1.0530e+004 

100 1.3713 1.0432e+004 0.9036 1.0432e+004 

30 

30 0.3724 537.9874 0.2933 537.9874 

70 0.7652 495.5985 0.6699 495.5985 

100 1.4225 491.7651 1.0160 491.7651 

48 

48 4.0005 4.2086e+004 1,1433 4.2086e+004 

70 4.5047 4.1420e+004 1,6658 4.1420e+004 

100 6.8139 4.0585e+004 2.3992 4.0585e+004 

6   Conclusion 

In this paper we have given two approaches the GPU-PSO–A-TSP and GPU-ACO–

A-TSP. We have used PSO and ACO, meta-heuristics optimization algorithms, for 

resolving TSP problem. We have also used the parallel GPU programming model to 

reduce the PSO and ACO algorithms computational time.   



According to the results of the two tables, we notice that the results of the shortest 

path of (CPU-GPU) ACO are better compared to the (CPU-GPU) PSO, but the best 

performance is that of (CPU-GPU) PSO compared to that of (CPU-GPU) ACO time. 

For this reason, we have achieved hybridization between PSO and ACO using the 

GPU based on [14]. 
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