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Abstract. A new paradigm of Machine Learning named Never-Ending Learning 

has been proposed through a system known as NELL (Never-Ending Language 

Learning). The major idea of this system is to learn to read the web better each 

day and to store the gathered knowledge in a knowledge base (KB), continually 

and incrementally. This paper proposes a new method that can help NELL 

populating its own KB using Bayesian Networks (BN). More specifically, we use 

facts (knowledge) already stored in NELL’s KB as input for a BN learning 

algorithm named VOMOS (Variable Ordering Multiple Offspring Sampling) by 

aiming at representing the acquired knowledge by NELL system. In addition, we 

propose to use the BN induced by VOMOS for identifying new semantic 

relations to be added to NELL’s KB, expanding thus its initial ontology.  
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1   Introduction 

Machine Learning [1] is a research area that has received a lot of attention within the 

Artificial Intelligence and Computer Science in general. This fact has contributed for a 

great advance and progress in results obtained by methods and algorithms from this 

research area in recent decades. Currently, however, there are not yet many computer 

systems able to learn cumulatively, forever, in a never-ending learning fashion. More 

important, there are not many systems that use the knowledge acquired yesterday to 

improve their ability of learning today, in a continuous and never-ending process. 

The first never-ending learning system reported in literature is named NELL (Never-

Ending Language Learning) [2, 3]. NELL is a computer system that runs 24 hours per 

day, 7 days per week, extracting information from web text to populate and extend its 



own knowledge base. The main goal of the system is to learn to read the web better 

each day, and to store the gathered knowledge in a never-ending growing knowledge 

base (KB). The system takes advantage of many different components like CPL [4], 

CSEAL [5], Prophet [6], OntExt [7], and Conversing Learning [8], in order to be self-

supervised and avoid semantic drifting [9, 10]. Semantic drifting is expected to happen 

in semi-supervised systems after too many iterations without supervision. NELL’s key 

principle to minimize semantic drifting is to couple many different views and many 

different tasks, in a multi-view [11] and multi-task [12] learning approach. The idea is 

combining different components with different approaches aiming to obtain a confident 

learning and minimize the semantic drifting. NELL’s KB is represented by an ontology-

based structure characterized by categories, relations and their instances. In [3], an 

extended version of the prototype reported in [2] is presented with the currently 

subsystems (modules or components). 

Since NELL’s KB continuously grows each day, it does not contain all instances of 

every category, neither all instances of every relation described in the ontology [13]. 

The main idea behind the work described in this paper is to show how we can help 

NELL populating its own knowledge base using Bayesian Networks (BN) [15]. In this 

paper, we use facts (knowledge) already stored in NELL’s KB as input for a BN 

learning algorithm named VOMOS (Variable Ordering Multiple Offspring Sampling) 

[16] aiming to discover new relations (Relation Discovery - RD), as well as to extract 

new instances for relations (Relation Extraction – RE) that NELL was not able to obtain 

from web text before. 

Related works focus on the same task of RD and RE using NELL’s KB, as well as 

other KB’s. In [17], the authors propose the use of association rules in order to populate 

NELL’s KB with instances and generalized association rule to investigate how useful 

they can be to extend the relations between the KB categories. In [14] a very similar 

idea is proposed, but based on Bayesian Sets (BS). However, developing methodologies 

to help both, extending and populating such KB and improving their coverage is still a 

challenge. In this paper we are interested in starting to explore Bayesian Networks (BN) 

to help in such tasks. 

BN are probabilistic models that allow inference and may be used to discover 

relationships between variables, thus the methods and algorithms applied to induce the 

BN structure may also be used to guide NELL’s ontology automatic extension and 

population. To do so, we propose to use VOMOS, a hybrid adaptive algorithm based 

on MOS approach [18] and designed for improving the process of inducing a BN 

structure from data. The main idea behind VOMOS is to explore the power of different 

evolutionary operators to search for suitable variable orderings. 

Therefore, this paper presents, as specific goals, i) the application of VOMOS to 

induce a BN capable of representing the acquired knowledge by NELL and allow 

inference (based on such representation); ii) explore VOMOS induced BN to identify 

new semantic relations to be added to NELL’s KB (expanding the initial ontology). 

The remainder of this paper is organized as follows.  Section 2 provides a brief 

overview of BN and it also presents VOMOS algorithm. Section 3 shows how VOMOS 

has been applied to NELL’s knowledge base to induce a BN and to identify new 

semantic relations. Section 3 also presents some experiments with the proposed 

approach. Finally, Section 4 brings the concluding remarks and points out some future 

work. 



2   Bayesian Networks 

Bayesian Networks (BN) [15] are graphical representations of multivariate joint 

probability distributions. They are described by directed acyclic graphs in which the 

nodes represent the variables and the arcs represent probabilistic dependencies between 

connected nodes (variables). The strength of each dependence is given by the 

conditional probability P(xi |
ix ), where xi and 

ix are the i-th variable and the set of 

parents of xi in the graph, respectively. The use of conditional independence is the key 

to the ability of BN to provide a general-purpose compact representation for complex 

probability distributions. 

Computational methods for learning BN may be seen as a manner to identify a 

probabilistic model which describes the dependence (and independence) among 

variables from a given domain [19]. Thus, BN learning algorithms may be used as a 

tool for the discovery of relationships among variables and therefore they are suitable 

for the purposes of this work.  

Among several BN learning algorithms available in the literature, this work applies 

a specific method named VOMOS [16]. This method, presented in Subsection 2.1, has 

important characteristics for the solution of the problem of identifying semantic 

relations in NELL’s knowledge base.  

2.1   VOMOS (Variable Ordering Multiple Offspring Sampling)  

VOMOS [16] is a Multi-Off-Spring (MOS) algorithm [18] aiming at optimizing the 

learning of Bayesian network structure by searching for a suitable Variable Ordering 

(VO). The basic idea of VOMOS is to use a hybrid adaptive algorithm (MOS) that 

simultaneously handles several evolutionary approaches and dynamically adjusts the 

participation of each one of them in the overall search process, as described in [18]. 

The main characteristics of the general evolutionary strategy employed by VOMOS 

are the following. Each individual of the population represents a possible VO. The 

variable identification (ID) is coded as an integer number. Therefore, for a problem 

described by M variables, V1, V2, …, VM having as ID the integers 1, 2, …, M 

respectively, there are M! possible VO and therefore M! possible individuals. 

Fig. 1 presents VOMOS algorithm pseudo-code; the input for the algorithm is the 

training dataset. MOS starts the search process by generating the initial population 

randomly (P0) and evaluating each individual. The individuals are evaluated by the 

fitness function and the best ones are then selected to generate the next generation. The 

new individuals will be created using a set of recombination operators (crossover and/or 

mutation operators). Each set of these operators create their own individuals Oi
(j) (i is 

the generation and j is the set of recombination operators). 

The idea of using this set of operators embedded in MOS is to explore the potential 

of each one collectively. In this sense, we are interested in approaching the variable 

ordering problem integrating previously defined evolutionary operators. The idea of 

integrating different methods and algorithms in order to enhance the results in a specific 

problem has shown good results in works related to Ensembles of Classifiers [20], as 



well as in the “Never-Ending Learning” paradigm [2]. Therefore it motivated us to 

explore these integration principles by using the evolutionary approach given in MOS 

[18]. 

According to empiric results presented in literature [16][21], VOMOS is able to 

induce good BNs which can be used for identifying relationships among variables from 

given domain. Thus, VOMOS seems suitable for the search of semantic relations 

between variables from NELL’s knowledge base. 

 

 

Fig. 1. VOMOS algorithm pseudo-code (extracted from [16]). 

3   VOMOS Algorithm applied to NELL’s Knowledge Base 

This paper aims at to apply VOMOS algorithm to NELL’s KB. The BN structure 

induced by VOMOS allows identifying the semantic relations existing in the KB. Thus, 

it will be possible to discover new relations that may be identified through BN structure 

and inserted in the knowledge base in the future, expanding the NELL’s initial 

ontology. 

Since VOMOS seeks a suitable variable ordering for the BN structure learning, when 

it is applied to NELL’s KB, it may identify the correct relationships (of dependence 

and independence) among the variables from the specific domain. Thus the BN induced 

by VOMOS allows, as direct consequence, a representation of NELL’s functional 

relations in a representation structure that enables inference. 

Algorithm: VOMOS Algorithm 

{Input: training dataset.} 

{Output: Best_VO, Best_BN.} 

1 begin 

2 Create initial global population of candidate solutions P0. 

3 Evaluate initial population P0. 

4 while termination criterion not reached do 

5 for every crossover operator do 

6     for every mutation operator to (if there are any) 

7         Create new individuals from current population 

Pi. 

8         Evaluate new individuals. 

9        Add new individuals to an auxiliary population 

Oi
(j). 

10     end 

11 end 
12 Combine populations O i 

(j) and Pi according to a pre-

established criterion to generate Pi+1. 

13 end 

14 end 

 



3.1   Preparation of the datasets 

NELL’s KB was initially pre-processed. This data pre-processing is very important 

because the data format stored in the KB is not suitable for BN learning algorithms. 

The pre-processing procedure allowed building a dataset containing only the NELL’s 

functional relations, named DataSet1. Thus, VOMOS was ran using DataSet1 as input 

to induce a BN able to allow inference in NELL’s KB and identify new semantic 

relations. 

NELL’s complete KB is available at http://rtw.ml.cmu.edu/rtw/resources. To aply 

the pre-processing step, we have used the tab-separated-value file with every belief in 

the KB, one per line. The accessed file was a subset built from iteration 945. The tab-

separated-value file has thirteen columns (or variables), of which only the first three 

were used: Entity, Relation and Value (forming a kind of SPO, Subject-Predicate-

Object, triple). The variable Relation presents relations existing between two categories 

stored in Entity and Value. Table I shows two examples of instances for these three 

variables. The first instance brings the relation teamplaysinleague that allowed learning 

two new values for the categories sporteam (in Entity) and sportsleague (in Value). 

This line in Table I means that Montana_tech_orediggers is a sport team which plays 

in league ncaa. Similarly, the second instance stores the value hunterdon, learnt for the 

category county (in Entity) and the value raritan, learnt for the category river (in 

Value). Both values were learnt from relation cityliesonriver. 

Table I. Examples of instances for the variables Entity, Relation, Value, provided in NELL’s 

KB. 

Entity Relation Value 

concept:sportsteam:montana_tech_or

ediggers 

concept:teamplaysinleague concept:sportsleague:

ncaa 

concept:county:hunterdon concept:cityliesonriver concept:river:raritan 

 

The dataset for VOMOS was built from values of those three variables provided in 

NELL’s KB. It can also be noticed, in examples shown in Table 1, that data still need 

to be cleaned before being used (e.g., in concept:river:raritan, it might be that we are 

only interested in raritan). Thus, the dataset for VOMOS is composed of variables (that 

represent categories) and their values which form semantic relations in NELL’s KB. 

For example, the relation teamplaysinleague (see Table I) provides both variables team 

(sportsteam) and league (sportsleague) to compose the dataset for VOMOS; their 

values (montana_tech_orediggers and ncaa) are also stored. From this dataset, 

VOMOS may induce a BN able to represent the relation teamplaysinleague through a 

directed arc between variables team and league, existing in induced BN structure, 

reinforcing NELL’s belief that this relation is correct. 



3.2   Experiments and Analysis of Results 

This section describes the experiments performed using VOMOS algorithm having as 

input datasets obtained from a relation set and values which were stored in NELL’s 

knowledge base (KB). The main goal described here is to induce Bayesian networks 

(BN) able to represent the semantic relations existing in NELL’s KB and identify new 

relations not present yet. VOMOS algorithm was chosen to carry out these experiments 

mainly because of its properties of being able to find a suitable variable ordering (VO) 

to optimize BN’s learning. Thus, the induced BN structure may be considered the most 

probable to represent the semantic relations existing in NELL’s KB, given a set of 

explored VO. 

Two datasets were built based on DataSet1, described in Subsection 3.1. These two 

new datasets have their characteristics summarized in Table II. The first dataset called 

DataSet_NELLValues has 6 variables and 31000 instances which were obtained from 

relations representing knowledge about sports. In each line of this dataset, the 

conjunction of the values of all variables represents a true knowledge, as shown in 

Table III. Notice that the first line in Table III brings the following true information: 

ahman_green (athlete) is a football (sport) player that plays for texans (team), as a 

running_back (sportposition), having fans in germany (country of fans) and uses cleats 

(equipment). In this case, this dataset tends to present relationships among all variables 

aiming to check if VOMOS can represent these relationships in a BN.  

The second dataset called DataSet_Relations has 10 variables and 100000 instances 

and, like the first dataset, it has data regarding sports. However, unlikely the first 

dataset, the instances do not clearly suggest the relationships among every variable. In 

this scenario, we are interested in assessing the ability of the VOMOS algorithm to find 

new relationships among distinct variables from NELL’s data. 

Table II. Datasets used in experiments. 

Dataset names Number of attributes Number of instances 

DataSet_NELLValues 6 31000 

DataSet_Relations 10 100000 

Table III. Examples of two instances existing in DataSet_NELLValues. 

Variables Athlete sport team sportposition countryOfFans equipment 

Instances 
ahman_green football texans running_back Germany cleats 

yogi_berra baseball yankees Catcher Japan uniform 

 

As previously mentioned in Subsection 2.1, VOMOS is an evolutionary algorithm 

and it was applied here following the same setting and methodology described in [16]. 

Each individual (representing a possible variable ordering) is evaluated by an objective 

function. The objective function, which expresses the quality of the BN structures, used 

here is the natural logarithm of a posteriori probability of the database of cases, given 

the structure to be evaluated, following the definition given by Cooper and Herskovits 

(g function) [19]. The initial population has 100 individuals. The new individuals are 

created using different combinations of crossover and mutation operators. Each 



combination is applied to same population. The crossover rate was defined as 0.9 and 

the mutation rate as 0.1. For the stopping criterion, it was defined a maximal number 

of 5 generations without improvements. These parameter values were empirically 

defined. 

Next, the VOMOS algorithm was run for the two datasets. Since the algorithm has 

stochastic nature, more than one run is necessary to verify the final solution. For this 

reason, VOMOS was run 35 times for each dataset. Table IV presents the average 

Bayesian score (g function) obtained by VOMOS. Since the two datasets have few 

variables, the VOMOS algorithm converged fast. As soon in first generation, in all runs, 

for two datasets, VOMOS has already obtained the best result. This result suggests that 

VOMOS is more adequate for larger datasets, with more variables, as already stated in 

[16]. 

In addition, and aiming at conducting a more robust comparative analysis, the 

datasets were also used as input to run the K2 algorithm [19], considered an efficient 

algorithm when a suitable VO is supplied. Since it is not possible to know such ordering 

in this case, K2 was performed using a random VO. The results obtained by K2 are also 

shown in Table IV. 

Table IV. Bayesian score (g function) for VOMOS and K2 (random VO). 

Dataset Names VOMOS K2 (random VO) 

DataSet_NELLValues -329686.72 - 336145.49 

DataSet_Relations -1156046.51 - 1158252.47 

 

Considering the results presented in Table IV, some observations are possible. 

Taking into consideration the assessed datasets, the Bayesian scores obtained with 

VOMOS are better than the ones achieved when using the K2 algorithm. As the 

Bayesian score reflects the quality of the induced BN structure, it is possible to state 

that VOMOS tends to induce the best BN. 

Fig. 2 (a) and Fig. 2 (b) present the BN structures induced by VOMOS, when 

applying it to data sets DataSet_NELLValues and DataSet_Relations, respectively. 

Observing the induced structures, it is possible to take some conclusions. These BN 

structures demonstrate the capacity of the VOMOS algorithm for representing the 

functional relations from NELL’s KB. 

Observing Fig. 2 (a), it is possible to notice that VOMOS identified the dependence 

relationships among the variable from DataSet_NELLValues, which has been built 

based on some functional relations existing in NELL’s KB. Thus, VOMOS 

demonstrates the ability to represent these relations in a BN structure. VOMOS has 

identified, for example, the relationship between variables sport and team, which is 

represented through an arc in the structure, as can be seen in Fig. 2 (a). This arc in the 

structure reinforces the belief of NELL’s system on the relation teamplayssport to be 

correct and so it can learn true values. 

The BN structure shown in Fig. 2 (b) supports further our thesis that VOMOS may 

represent functional relations existing in NELL’s KB. Notice that DataSet_Relations 

has more variables than DataSet_NELLValues and the conjunction of the values of all 

variables do not suggest relationships among the variables, as done in 

DataSet_NELLValues. Therefore, the structure induced by VOMOS from 



DataSet_Relations reflects its ability in representing dependence relationships among 

variables from data of the functional relations in NELL’s KB. Another interesting issue 

is that country has been the only variable that is not connected in the BN structure (see 

Fig. 2 (b)). This suggests that country has no relationship with other variables, 

according in DataSet_Relations. Actually, there is no functional relation defined 

between country and other variables in the subset of NELL’s KB used in these 

experiments. However, our concern is also to verify whether VOMOS could induce a 

BN structure to represent some functional relations, which did not exist in NELL’s KB. 

As an example, we can analyze the arc in Fig. 2 (b) between fan and equipment 

variables. This arc represents a functional relation not existing in NELL’s KB that 

makes sense. Thus, VOMOS has found a new functional relation that may be inserted 

in NELL’s ontology and that will allow the system to expand its knowledge on both 

categories. Other example is shown by the arcs between team and athlete and athlete 

and startposition. The arcs indirectly suggest a new functional relation. This same 

relation is directly represented in structure of the Fig. 2 (a) through arc between team 

and sportposition. This will be investigated later. 

 

 

(a) 

 

(b) 

Fig. 2. (a) BN structure induced by VOMOS from the DataSet_NELLValues dataset. (b) BN 

structure induced by VOMOS from the DataSet_Relations dataset. 

These results show initial promising empirical evidence on the feasibility of using 

Bayesian Networks as a tool for representation of knowledge stored through semantic 

relations in NELL’s KB. From this representation, it is still possible to discover new 

relations to expand its initial ontology. We intend, in sequence, to augment the number 

of variables in datasets, aiming at to represent and identify different knowledge areas 

learnt by NELL system. 

4   Conclusions and Future Works 

This paper proposes a new method for representing and identifying semantic relations 

from knowledge base on a never-ending system named NELL. This new method 

employs a Bayesian network learning algorithm called VOMOS aiming to induce 



Bayesian Networks that identify dependence relationships among variables and thus 

representing the semantics relations. 

The presented results show the feasibility of application of VOMOS for NELL`s 

knowledge base (KB). In the performed experiments, a subset of NELL’s KB was pre-

processed for providing datasets to VOMOS. Some relations existing in NELL’s KB 

are drawn and their variables and values form two datasets that serve as input to run 

VOMOS. From these datasets, VOMOS induced Bayesian Network structures that 

represent the dependence relationships among the variables that form the semantic 

relations. The initial experiments have shown the ability of VOMOS to learn a Bayesian 

Network capable of identifying the semantic relations existing in NELL’s ontology. 

Besides, VOMOS has been able to find new functional relations that may allow 

expanding the NELL’s initial ontology. 

Based on these initial results, we intend to investigate new Bayesian Network 

learning algorithms (based on VO [22], or not) for being applied to NELL’s KB. We 

also pretend to study inference algorithms aiming at inferring new facts which can 

populate NELL’s KB. In addition, new experiments will be run in future from NELL’s 

KB in Portuguese [13]. 

Another very interesting line of investigation for future work is to explore relational 

(and first order) approaches to Bayesian Networks [23], such as the more recent 

approaches proposed in [24, 25]. 

 

Acknowledgments. The authors acknowledge the Brazilian Institutional Program – 

PIBIC/FAPEMIG/UFSJ – by the scholarship granted through document nº 

002/2014/PROPE to develop this research and the Univ. Lyon - UJM-Saint-Etienne 

(CNRS,Laboratoire Hubert Curien) in France for the support. 

References 

1. Mitchell, T. M.: Machine Learning. McGraw-Hill, New York (1997) 

2. Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka JR., E. R., Mitchell, T. M.: 

Toward an Architecture for Never-Ending Language Learning. In: Proc. of the Twenty-

Fourth AAAI Conference on Artificial Intelligence. AAAI Press, (2010) 

3. Mitchell, T., W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson, B. Dalvi et al. 

"Never-ending learning." In Proceedings of the Twenty-Ninth AAAI Conference on 

Artificial Intelligence, pp. 2302-2310. AAAI Press, 2015. 

4. Carlson, A., Betteridge, J., Hruschka Jr., E. R., Mitchell, T. M.: Coupling Semi-Supervised 

Learning of Categories and Relations. In: Proc. of the NAACL HLT 2009. Work on 

Semisupervised Learning for Natural Language Processing, pp. 1--9. New Jersey (2009) 

5. Carlson, A., Betteridge, J., Wang, R., Hruschka JR., E. R., Mitchell, T. M.: Coupled Semi-

Supervised Learning for Information Extraction. In: Proc. of the Third ACM International 

Conference on Web Search and Data Mining (2010). 

6. Appel, A. P., Hruschka Jr., E. R.: Prophet - a link-predictor to learn new rules on NELL. 

In: Proc. of the IEEE ICDM2011 Workshop on Data Mining in Networks. IEEE Press, Los 

Alamitos (2011) 

7. Mohamed, T. P., Hruschka Jr., E. R., Mitchell, T. M.: Discovering Relations between Noun 

Categories. In: Proc. of the 8th Conf. on Emp. Methods in Natural Language Processing, 

pp. 1447--1455. Stroudsburg (2011) 



8. Pedro, S. D. S., Hruschka Jr., E. R.: Conversing Learning: Active Learning and Active 

Social Interaction for Human Supervision in Never-Ending Learning Systems. In: 13th 

Ibero-American Conf. on Artificial Intelligence, pp. 231--240. Springer-Verlag, 

Heidelberg, (2012) 

9. Curran, J. R., Murphy, T., Scholz, B.: Minimising semantic drift with mutual exclusion 

bootstrapping. In: Proc. of the 10th Conf. of the Pacific Association for Computational 

Linguistics, pp. 172--180, (2007) 

10. Hruschka Jr, Estevam R., Maisa C. Duarte, and Maria C. Nicoletti. "Coupling as Strategy 

for Reducing Concept-Drift in Never-ending Learning Environments." Fundamenta 

Informaticae 124, no. 1-2 (2013): 47-61. 

11. Pennacchiotti, Marco, and Patrick Pantel. "Entity extraction via ensemble semantics." In 

Proceedings of the 2009 Conference on Empirical Methods in Natural Language 

Processing: Volume 1-Volume 1, pp. 238-247. Association for Computational Linguistics, 

2009. 

12. Caruana, Rich. "Multitask Learning." Machine Learning 28 (1997): 41-75. 

13. Duarte, Maisa C., and Estevam R. Hruschka. "How to read the web in Portuguese using the 

never-ending language learner's principles." In 2014 14th International Conference on 

Intelligent Systems Design and Applications, pp. 162-167. IEEE, 2014. 

14. Verma, Saurabh, and Estevam R. Hruschka Jr. "Coupled bayesian sets algorithm for semi-

supervised learning and information extraction." In Joint European Conference on 

Machine Learning and Knowledge Discovery in Databases, pp. 307-322. Springer Berlin 

Heidelberg, 2012. 

15. Pearl, J.: Probabilistic reasoning in intelligent systems: networks of plausible inference. 

Morgan Kaufmann, San Mateo (1988) 

16. Santos, E. B., Hruschka Jr., E. R., Ebecken, N. F. F.: Learning Bayesian Network Structures 

using Multiple Offspring Sampling. In: Proceedings of the 11th International Conference 

on Intelligent Systems Design and Applications (ISDA 2011). IEEE Press, Los Alamitos 

(2011) 

17. Miani, R. G. L, Hruschka Jr, E. R.: Exploring Association Rules in a Large Growing 

Knowledge Base. International Journal of Computer Information Systems and Industrial 

Management Applications. 7, 106--114 (2015) 

18. La Torre, A., Pena, J. M., Muelas, S., Freitas, A. A.: Learning hybridization strategies in 

evolutionary algorithms. Intelligent Data Analysis. 14, 333--354 (2010) 

19. Cooper, G. F., Herskovits, E.: A Bayesian Method for the Induction of Probabilistic 

Networks from Data. Machine Learning. 9, 309--347 (1992) 

20. Gama, J.: Combining Classification Algorithms. Ph.D. thesis, University of Porto, 

Portugal, (2000) 

21. Santos, E. B., Ebecken, N. F. F, Hruschka Jr, E. R., Elkamel, A., Madhuranthakam, C. M. 

R.: Bayesian Classifiers Applied to the Tenessee Eastman Process. Risk Analysis. (2013) 

22. dos Santos, Edimilson B., Estevam R. Hruschka Jr, Maria do Carmo Nicoletti, and Nelson 

FF Ebecken. "The influences of canonical evolutionary algorithm operators and variable 

orderings in learning Bayesian classifiers from data." International Journal of Hybrid 

Intelligent Systems 11, no. 3 (2014): 183-195. 

23. Poole, David. "First-order probabilistic inference." In Proceedings of the 18th international 

joint conference on Artificial intelligence, pp. 985-991. Morgan Kaufmann Publishers Inc., 

2003. 

24. Kimmig, Angelika, Lilyana Mihalkova, and Lise Getoor. "Lifted graphical models: a 

survey." Machine Learning 99, no. 1 (2015): 1-45. 

25. Schulte, Oliver, Zhensong Qian, Arthur E. Kirkpatrick, Xiaoqian Yin, and Yan Sun. "Fast 

learning of relational dependency networks." Machine Learning 103, no. 3 (2016): 377-

406. 


