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Abstract. As the interest in regulating energy usage and participating
in the demand-response market is growing, new energy management al-
gorithms emerge. Energy consumption of elevators represents about 5%
of the overall consumption of a building. Thus, improving energy perfor-
mance of elevators becomes a relevant challenge. In this paper, a method
is described to assist potential customers in choosing the most relevant
storage units and control method for their multisource elevator. In order
to obtain a certification on electricity cost savings and maximum power
peaks, a randomized algorithm is designed. The best storage units design
is found for a given use case, and a guarantee (with a fixed probability)
is given that the elevator’s consumption from the grid will not exceed a
given power peak. Moreover, a similar guarantee is given on the minimum
savings that could be achieved, choosing a given controller.
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1 Introduction

Global energy consumption regulation is a major issue nowadays. The will to
participate in the emerging demand-respond market encourages industries and
building managers to look for energy management algorithms. Coupled with
relevant control algorithms, the design of energy efficient systems is investigated.

One of the core questions we often encounter in the optimization of design,
planning, and control, is the robustness of the proposed solution to uncertainty
in the measured (or predicted) data. This includes robustness of the optimization
method to unusual data sets, even when the data are available or more-or-less ac-
curately forecasted at the time at when the optimization method is applied. The
robustness question concerns either the optimization criterion itself (i.e., what is
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the probability that the proposed solution effectively brings improvements over
the current practice?) or the satisfaction of some constraints (i.e., what is the
probability that the execution of the proposed solution becomes impossible after
a given amount of time?). Let us note that, in some cases, an optimization crite-
rion can be replaced by a more or less “soft” constraint which could be violated,
but “not too often”. For example, a contract may allow peak electrical power
over a given day Pday to exceed a given limit Pmax, but not more than a given
number of days during the year; otherwise a significant penalty is incurred.

There are an infinite number of daily scenarios of elevator usage; thus we
cannot simulate them all. A particular method, that can be used to offer guar-
antees, relies on the fact that an event (such as exceeding Pmax on a given day)
which is not observed over a representative set of N samples (with a large N) has
low probability of occurrence (depending on N). In this paper, we investigate the
use of such a method for the design and control of a multisource elevator.

Two use cases are considered. The first use case concerns peak power con-
sumption: what kind of system design allows to satisfy the power peak constraint
(with a given probability) and what is the daily extra cost induced? The second
use case concerns the choice of relevant controller and electricity tariff in order to
enable savings? These two use cases are managed as extensions of our previous
work on the multisource elevator control problem [5].

2 The Multisource Elevator Problem

We call “prosumers”, entities that consume and/or produce energy. An energy
hub allows each prosumer to consume power produced by all other prosumers
at the same time.

Definition 1. Let P = {π1, . . . , π6} be our set of np = 6 prosumers, all con-
nected to the same energy hub h.

The set P of prosumers is composed of: an elevator π1, that can get energy from
a battery π2, a supercapacitor π3, the grid π4 and a solar panel π5. The super-
capacitor is here to absorb power peaks above the maximum power capability
of the battery. But the former is more expensive than the latter, while usage
age them both. Moreover, energy can be recovered from the elevator when the
brakes are applied. Finally, energy can be dissipated in a resistor π6 if there is
too much.

A system composed of an energy hub h and its prosumers can be represented
by a star oriented graph rooted in h. There is an arc (πi, h) if Prosumer πi can
produce energy and the weight of the arc is the maximum power production. In
the same way, there is an arc (h, πi) if Prosumer πi can consume energy and the
weight of the arc is maximum power consumption.

Definition 2. Let G = (P ∪ h,A) be the star oriented graph associated to the
multisource elevator.

We suppose that time can be sampled in a regular, uniform way.
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Definition 3. Let τ ∈ R be the sampling period (expressed in hours), and H ∈ N
be the number of periods considered in predictions and planning. Then time-steps
are expressed in the following way: tl = tl−1 + τ = l × τ,∀l ∈ {1, . . . ,H}.

Finally, an electricity cost function costπ4 : [1, . . . ,H] ⇒ R gives the price
associated to purchasing electricity from (or reselling electricity to) the grid.

Then, we can define the multisource elevator problem:
Instance: a set of prosumers P, a graph G = (P ∪h,A), a period τ ∈ R, a time

horizon H ∈ N, an energy cost function costπ4

Solution: S, a np ×H matrix of power values
Question: given data pmaxP ∈ R and costmaxhub ∈ R, can power peaks from and to

the grid and the energy bill remain bounded, respectively by pmaxP
and by costmaxhub ?

3 State of the Art

In order to regulate the energy consumption of an elevator, the energy con-
sumption itself can be decreased, or energy can be recovered and stored into
storage units to be reused later. In [7], smart ways to choose elevator physical
components (motor, drive, etc) are summarized, as well as appropriate sizing
methods.

Coupling elevators with supercapacitors has been studied by many researchers
and companies. Some of them investigate how to commute softly between the
grid and a supercapacitor, like in [6,9]. In [6], a physical multisource system is
designed to power an elevator. Rules are used to charge or discharge batteries
depending on whether the electrical current is below or above a given reference.
Likewise, [9] presents three rule-based methods to control a battery coupled with
an elevator. This method takes into account peak/off-peak tariffs and reduces
energy consumption cost by storing energy recovered from the elevator. These
methods allow to control very reactively the system, but cannot take into ac-
count optimally external considerations such as the electricity tariff or battery
state of health. Therefore, these control methods may not be efficient regarding
economic objectives.

Works have also been conducted on how to take into account future energy
consumption to minimize the energy bill, using storage units. In [2], a General
Energy and Statistical Description (GESD) of the possible missions of an ele-
vator is proposed, as well as a dynamic programming-based energy manager.
The energy manager is inspired by stock management theory and minimizes the
sum of energy (i) absorbed from the grid, (ii) dissipated in the braking resistor
and (iii) not provided to the elevator. The optimization is done off-line. This
method allows to find an optimal solution regarding economical objectives from
probabilities of consumption. But elevator usage is unpredictable by nature and
what is to be done when the strategy is unfeasible is not investigated.

This work follows up our previous development on the subject where several
energy sources are supposed to be available to be used by the elevator and
the problem is to choose between them over time, as stated in Section 2. In
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[3], the real-life deployed application was described, including communication
process, and web interface. In [4], two coupled controllers were proposed to solve
the problem and the interactions between them are studied. The idea was to
use a Strategic Optimizer (SO) to solve a linear program and get a sourcing
strategy over a day. This sourcing strategy is then sent to a Local Controller
(LC) that controls in real-time the energy hub, making a trade-off between the
current situation and the strategic instructions. In [5], the sourcing problem and
the multisource elevator problem were formalized. Several local controllers were
proposed and deterministic experiments were conducted to give a first evaluation
of the method potential savings.

The current paper extends the previous work on SO/LC based on a solu-
tion introduced in [4] by explicitly handling the effect of the uncertainty on
the outcome of the closed-loop operation. A Certification Framework is used to
guarantee customer savings on the energy bill and a limit on the power peak
consumed from the grid.

4 Design of a Robust Solution

In this section, the goal is to design robust solutions regarding uncertainties.
As we want to provide a guarantee that a certain condition will be satisfied at
least a great percentage of the days, the uncertainties to be considered concern
all elements that vary from a day to another. Let us note that these elements
may be more or less known or predictable at time t0 : the state of charge of the
battery is known at t0; a weather forecast enables to estimate solar production
precisely enough for our needs; and a forecast of the elevator’s energy needs can
also be available but often much less precise. The control method takes such
forecasts into account. To certify a property on a given percentage of the days,
we have to consider these forecasts as part of the uncertainty set, even though
the controller take them as data.

For that purpose, we draw samples of elevator calls according to a statistical
model. This model distinguishes multiple types of travels: morning and afternoon
arrivals and departures, lunch breaks, inter-floor travels, arrivals and departures
of external visitors. Statistical laws are identified based on historical data. For
each travel type and relevant pair of floors, these laws provide information on the
number of people moving during the day, the distribution of their weights, the
distribution of the events, etc. The attendance of the building is tuned depending
on the day-of-week and week-of-year. A random generator is used on this basis
to generate scenarios. A forecast of elevator energy consumption is built by
averaging energy production or consumption on several daily scenarios of the
same kind. Thus, there is one forecast per kind of day.

Definition 4. A drawn scenario of daily elevator consumption, for the kind of
day D, is denoted wDcons ∈WD

cons. The associated forecast is denoted fDcons.

The second kind of uncertainties is solar radiation, uniformly drawn between
two bounds: a typical cloudy day and a typical sunny day. The predicted solar
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production, known at the beginning of each day, is drawn between the daily
profile minus ten percent and the daily profile plus ten percent. Note that solar
production samples are uniformly drawn, regardless of the kind of day.

Definition 5. A drawn scenario of daily solar production, is denoted wprod ∈
Wprod. The associated forecast is denoted fprod.

Thus, let f be the forecast that feeds SO. It is deterministic and depends
only on the kind of day considered.

Definition 6. f = [fDcons, fprod], a 2×H matrix, with H the number of periods
considered for the predictions.

The last kind of uncertainty is the initial state of charge of storage units at
the beginning of a simulated day. These states of charge are uniformly drawn
between 0% and 100%.

Definition 7. Drawn initial state of charge of storage units are denoted winitSOC ∈
[0, 100]2.

Finally the uncertainty set considered contains the three sources of uncer-
tainties stated before, as well as the forecasts (even if they depend only on the
kind of day).

Definition 8. Let W =
⋃
D

(WD
cons) × Wprod × [0, 100]2 be the uncertainty set

considered and wD ∈ W be a scenario drawn for a given day D such that:
wD = (wDcons, wprod, winitSOC , f).

Now, let us consider two different use cases where a certification has to be
given on the control method achievements. In the first one, a customer wants to
respect a limit of power consumption enforced by law or by his electricity tariff
(that can be much more expensive above a given power limit). In this use case,
the aim is to determine the optimal sizing of a battery and a supercapacitor
in order to certify that the customer will never exceed the given power limit.
In the second use case, a customer already has storage units and wants to use
them to participate in the demand-response market. We want to certify that, if
he buys our control solution, he will gain X % on his daily electricity bill with a
prescribed high probability.

In order to solve these optimization problems, a randomized algorithm is
used. The principles of the chosen method are the following. Some key design
parameters, relevant for the given problem, are chosen. Then, for all possible
values of the design parameters, control algorithms are simulated with several
uncertainty scenarios. The design vector, that gives admissible solutions and the
best objective value on simulated scenarios, is kept.

Because there is an infinite number of possible uncertainty scenarios, we
cannot simulate them all. Thus, in order to get a certification that simulation
results are representative, a statistical model of the elevator travels (based on
Gaussian laws) has been developed and used in a randomized algorithm.

To obtain this certification, we use results on randomized algorithms shown
in [1]. We briefly recall them, and apply them to our context below. Let:
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– Θ be the set of possible values of design parameters we want to optimize (i.e.:
storage unit possible sizes, different electricity tariffs, etc). The cardinality
of Θ is denoted nC .

– θ ∈ Θ be a vector with nθ components.
– W be the set of uncertainties (Definition 8), composed of possible elevator

consumption curves during a day, solar production curves, and initial state
of charge.

– wD ∈ W an uncertainty scenario drawn for a given day D, as stated in
Definition 8.

– u∗(θ, wD) be a vector of target state of charge for the battery and target
energy purchase from the grid over the day, given by SO.

– J(θ) be an objective function to minimize.
– C be a set of constraints on design parameters.
– g : Θ ×W → {0, 1} be a function that returns zero if all constraints c ∈ C

are satisfied and one otherwise.

Then, we use the following result: if we generate N i.i.d. samples {w(1), . . . , w(N)}
from W according to the probability PrW and then solve the following sampled
optimization problem:

min
θ∈Θ

J(θ) subject to

N∑
l=1

g(θ, w(l)) ≤ 0 (1)

with

N ≥ 1

η
(

e

e− 1
)(ln

nC
δ

) (2)

then, the probability for the optimal solution θ̂N to the optimization problem, to
violate the design constraint is smaller than η, with a confidence probability no
smaller than 1−δ. In other terms, we can certify, with a probability 1−δ, that the
control strategy will satisfy the design constraint in at least 100×(1−η) percent
of the cases. In order to solve this optimization problem, we use Algorithm 1.

5 Experiments

These experiments were conducted in Matlab [8]. The randomized algorithm is
applied to the use cases presented above and the results are discussed.

A solution value is evaluated according to the daily cost cdaily Key Perfor-
mance Indicator (KPI). Let: cebill be the energy bill of the whole day and caging

be the aging cost associated to the storage units usage that has been done during
the day. But depending on the controller, final states of charge can be different.
Then we note csoc the cost associated to refill (or to empty) storage units to
match their initial state of charge. We consider that corresponding energy is
purchased (or sold) at the cheapest tariff.

Definition 9. The daily cost is defined as cdaily = cebill + caging + csoc.
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Algorithm 1 Randomized algorithm inspired of [1]

1: S ← ∅ . N -set i.i.d. samples to be drawn from W
2: for each kind of day D do
3: let nD be the number of D-days in year

4: draw a set SD of dn
D×N
365
e samples of D-days

5: S ← S ∪ SD

6: end for . at this point S = {w(1), . . .} is a set of at least N samples,
representative of every kind of day

7: for each θ ∈ Θ do
8: for each w(l) do
9: compute the optimal sourcing strategy u∗(θ, w(l))

10: simulate a day w(l) using u∗(θ, w(l))
11: check if the constraints C are respected: g(θ, w(l))
12: end for

13: if
N∑
l=1

g(θ, w(l)) = 0 then . θ is feasible

14: compute J(θ) . the objective function value for θ
15: end if
16: end for
17: keep the feasible θ for which J(θ) is minimal

5.1 Which Storage Units to Avoid Power Peaks?

In this sub-section, suppose that the objective is to sell our control solution
to a customer admitting a very big annual penalty if he purchases electricity
from the grid over a given power value pmax more than a given number of days
during the year. Thus, we want to ensure (with a confidence of 1− δ) that there
is probability lesser than η to exceed the power value pmax. Among solutions
satisfying this condition, the most profitable solution should be chosen.

The theory presented in Section 4 is used to decide which storage units the
customer should buy to be certified to achieve his goal. In this experiment, we
consider that the customer subscribes to a peak / off-peak tariff and uses our
LC that reduces power peaks coupled with our SO. Now let us define:

– a function f(θ, w, u∗) that gives the daily cost cdaily obtained by the lo-
cal controller at the end of the day, depending on: θ the considered design
parameter, w the daily scenario, and u∗ the strategy pre-computed by SO.

– a set B = {3000, 6000} of possible battery energy capacities (in Wh).
– a set S = {60, 120, 180} of possible supercapacitor energy capacities (in Wh).
– a set F of maximal daily costs certified to the customer (in e).
– the resulting set of design parameters Θ = B × S × F , and θ ∈ Θ a vector

with nθ = 3 components; the first component is the battery capacity, the
second is the supercapacitor capacity, and the third is the corresponding
certified daily cost.

– the design constraint c1, that states the maximum power peak from (or to)
the grid should be below pmax,

c1 : max
t∈{0,...,H}

(|p4(t)|) ≤ pmax
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– the design constraint c2, that states the net daily gain should be above the
third component of the design parameter:

c2 : f(θ, w, u∗) ≤ θ3
– the resulting set of design constraints C = {c1, c2}
– J(θ) = θ3, a maximum daily cost allowed
– the maximum power peak allowed is pmax = 6000 W
– representativeness and confidence probabilities are η = 0.05, δ = 0.05, and

the corresponding number of drawn samples is N = d 1η ( e
e−1 )(lnnC

δ )e = 152

These parameters given, the optimization problem (1) is solved. Let us note
that, in practice, the third component of the design parameters does not have
to be introduced. Indeed, θ3 can be chosen as max

w(l)∈S
f(θ, w(l), u∗).

In the context studied (chosen elevator, storage units yield, etc), the following
report could be done to the customer.

“The smallest supercapacitor (60Wh) does not permit to avoid all consump-
tion peaks above 6 kW. Thus, the best choice is the 3 kWh battery and the
120Wh supercapacitor, because they have the smallest investment cost, avoid
peaks, and have the same daily cost as every other case: 0.49 e. For the sake
of the comparison, the mean daily cost of a business as usual controller in the
same case is 0.33 e. Thus, we can certify (with probabilities given above) that
avoiding peaks above 6 kW will cost at most 16 euro cents more per day than
with a classical controller.”

Note that: 1) the mean daily cost computed on the 152 samples is 0.32 e,
far better than the certified value (money is saved actually), 2) these results
were obtained without considering reselling energy to the grid, reselling will
be considered in the next subsection, 3) as the tariff gap grows, the daily cost
induced by the MinPeaks LC decreases.

5.2 Which Tactic and Tariff to Get Savings?

Now, let us consider a case where a customer already has storage units (required
for safety reasons) and wants to use them to improve his energy bill. Several
control solutions, and electricity tariffs, must be compared to tell this customer
which ones are the best for him. The customer wants to show that over period
of a given length, gains have been made. For that purpose, let us define:

– a set T of possible electricity tariffs: T = {flat (0.00013), peak/off-peak
(0.00015 / 0.00010), indexed on spot with the same coefficient for both pur-
chase and sale of energy (between 0.0002991 and 0.0009386)} (e/Wh). These
tariffs are representative of those can be found in France. The flat tariff is
cheaper than the others but does not allow a customer to take advantage
of his storage units by shifting consumption or inject into the grid. The
peak/off-peak tariff is cheaper than the flat one during off-peak hours (18:00
- 9:00) and more expensive otherwise. The indexed on spot tariff is more ex-
pensive than the others but varies significantly every hour and remunerates
the injection of energy at a high value.
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– a set C of possible controllers (introduced in [5]): C = {MinPeaks LC that
reduces power peaks following strategic instructions from SO, Opportunistic
LC that minimizes dissipated energy, Secure LC that does not use storage
units at all}. The MinPeaks LC is coupled with the strategic optimizer to
take advantage of the storage units to smooth power peaks. The other con-
trollers are on their own to reduce the installation cost of the solution, while
achieving savings, or reducing costs.

– a set M of possible maximum power values from and to the grid: M =
{[−50000, 0], [−50000, 20000]} (W). The first possibility deny re-selling elec-
tricity to the grid, while the second one allows re-selling.

– a set F of maximal daily costs that could be certified to the customer (in e)
– the resulting set of design parameters Θ = T × C ×M × F , and θ ∈ Θ a

vector with nθ = 4 components
– the design constraint c

′
, that states the daily cost should stay below the 4th

component of the design parameter:

c
′

: f(θ, w, u∗) ≤ θ4

– the resulting set of design constraints C
′

= {c′}
– J(θ) = θ4, a maximum daily cost allowed
– Two probabilities η = 0.05, δ = 0.05, and N = d 1η ( e

e−1 )(lnnC

δ )e = 187.

In this context, we would give the following report to the customer.
“A business as usual controller that does not use storage units achieves a

daily cost of 0.58 e with the flat tariff; while a daily cost of 0.25e is achieved
when re-selling is allowed, with the peak/off-peak tariff.

If re-selling is not allowed, the Opportunistic LC coupled with the peak/off-
peak tariff should be chosen. The associated certified cost is 0.27 e per day while
the average cost obtained is -0.03 e (which is actually a gain).

If re-selling energy to the grid is allowed, the indexed on spot tariff should be
chosen, along with the MinPeak LC coupled with SO. The corresponding certified
daily cost is -0.09 e per day. That means that the elevator operational cost and
the storage units investment cost are compensated by the gain on electricity bill.
Moreover the mean daily cost obtained on those samples is -1.24 e.”

6 Conclusion

In this paper, a way to certify, under uncertainties, savings achieved by a control
method for a multisource elevator, is proposed. This Certification Framework is
based on a randomized algorithm and its associated bound on the number of
needed drawn samples, proved in [1].

Using this algorithm, a certified bound on the maximum power peak pur-
chased from the grid by a multisource elevator can be given, as well as a lower
bound on the savings achieved. Such a solution could be used by a building man-
ager to participate in the demand-response market. In the same way, a customer
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can be told the best control solution he should buy for his multisource elevator,
and be certified of the minimum economical gain induced.

The experiments show that power peaks can be avoided and a multisource
elevator can be made energy cost-free, though this is strongly dependent on the
context. The key point of the method presented is the possibility to find the best
design in a given context, and the ability to certify the associated savings. This
allows a manager to arbitrate if the chosen design worth to be installed or not.

Future work will be focused on the influence of the kind of building and eleva-
tor on the potential savings. A real-life experiment would have to be conducted
to enforce computation results.
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