
Design and Development of Genetic Algorithm for Test Interval Optimization of

Safety Critical System for a Nuclear Power Plant

Molly Mehra, M.L. Jayalal, A. John Arul,

S.Rajeswari, K. Kuriakose, S.A.V. Satya Murty

Indira Gandhi Centre for Atomic Research

Kalpakkam, Tamil Nadu

India PIN:603102

 mollymehra@igcar.gov.in

Abstract—With the increase in Nuclear Power Plant (NPP)

operating experience, the importance of effectively scheduling

the maintenance activities has been recognized as it decreases

the testing and maintenance costs without compromising the

plant safety. Surveillance Tests are vital for safety critical

systems of nuclear plants that need regular maintenance for

ensuring reliable functioning. Deciding the value of

Surveillance Test Interval forms an optimization problem

where two separate cases can be considered. First one is the

cost minimization while the performance or unavailability is

constrained to be at a given level. The second case is the

maximization of availability or performance, for the given cost

level. Genetic Algorithm (GA) is applied to solve the model to

get the global optimized maintenance strategy. The results

obtained are validated with the reference study results.

Keywords- Genetic Algorithm; Nuclear Power Plants; Safety

Grade Decay Heat Removal System; Simple Genetic Algorithm;

Steady State Genetic Algorithm; Prototype Fast Breeder Reactor

I. INTRODUCTION

Genetic Algorithm (GA) is adaptive heuristic search
algorithm premised on the evolutionary ideas of natural
selection and genetics. It represents an intelligent
exploitation of a random search within a defined search
space to solve optimization and search problems. Since the
advent of GA in early 1970s it has been employed in many
application domains. Changes to the implementation of the
basic GA have been pursued by researchers to improve its
performance. A particular method may have advantage over
another for a particular domain of application. GA has been
successfully employed for Test Interval optimization in
many plants and continues to apply to existing and upcoming
NPPs. Varied approaches have been adopted and suggested
in work relating to this domain. Here, a general structure for
GA is sought which is most effective in attacking such
problems.

A 500 MWe capacity sodium cooled pool type Prototype
Fast Breeder Reactor (PFBR) project has been designed by
Indira Gandhi Centre for Atomic Research (IGCAR) which
is under construction at Kalpakkam. For PFBR Test Interval
data has been given from experience of previous fast

reactors, this value can be improved with further cost
reduction without affecting the unavailability.

Test Interval Optimization in Fast Reactor domain is
being done for the first time and we have selected the Safety
Grade Decay Heat Removal (SGDHR) system of Prototype
Fast Breeder Reactor (PFBR) for our study. The system
comprises of many components; with redundancy in design
for increased component reliability. Test Intervals for all
components are optimized such that the minimum cost is
involved in testing without affecting the safety of plant. This
is a multimodal and multiobjective problem that justifies the
choice of Genetic Algorithm (GA) over other traditional
search techniques like hill climbing that have the limitation
of getting trapped in local optima [1]. The problem is
complex and the solution space is very large. Normal GA
techniques do not suffice in providing a global feasible
solution. Therefore, different flavors of GA and different
operator techniques have been implemented and compared.
Here, two categories of GA are considered – Simple Genetic
Algorithm (SGA) and Steady State Genetic Algorithm
(SSGA). GA operators like- one point, two point and
multipoint crossover are explored. Performances of different
selection operators like- Roulette Wheel, Tournament
Selection are compared. Coding is carried out in C++ using
Object Oriented Methodology.

II. PROBLEM DESCRIPTION

SGDHR is a passive standby system of PFBR for decay

heat removal which is called into action when the normal

active heat removal path, through Operational Grade Decay

Heat Removal (OGDHR) system is unavailable. For

successful decay heat removal both Primary Heat Transport

and SGDHR should work. So, the components in primary

sodium circuit (like pump, motors), secondary sodium circuit

(Direct Heat Exchanger, piping, valves) and air circuit (Air

Heat Exchanger, dampers) need to undergo periodic testing

and maintenance to guarantee their availability when actual

demand on the system comes. The reliability analysis was

done [2] and fault trees [3] for both Primary Circuit and

Intermediate air circuit were considered.

166

Trends in Innovative Computing 2012 - Intelligent Systems Design

mailto:mollymehra@igcar.gov.in

III. EQUATION FORMULATION

Models for unavailability and cost of testing of individual
components are established with Surveillance Test Interval
as decision variable. Reliability parameters like- standby
failure rate, per demand failure probability, mean time to
test, testing cost per hour etc. are considered for modeling.
The list of symbols used to represent reliability parameters
and their meanings are given in Table 1. The cost of testing
and maintenance of whole system is found by adding
individual component costs and the system unavailability is
found by adding the minimal cutsets derived from the fault
tree analysis of the system. These models for system cost and
unavailability serve as objective functions that have to be
minimized by deciding on the values of test and maintenance
intervals.

TABLE I. RELIABILITY RELATED SYMBOLS USED

Symbol Meaning

Ti Surveillance test interval

T Mean time to test

λ Standby failure rate

TR Mean time to repair

Cht Surveillance Testing cost per hour

Chr Cost of repair per hour

The unavailability equation for SGDHR system was

formulated as:
 (1)

where ui(x) represents unavailability of component that
depends on the vector of decision variables x. Total
unavailability was found from the cut-set equations obtained
from the fault tree analysis. System unavailability is sum of j
number of minimal cut sets and the product k extends to the
number of basic events in the j

th
 cut set as:

 (2)

where ujk represents the unavailability associated with the
basic event k belonging to minimal cut set number j. The
cost model is established as:

 (3)

The total yearly cost of the system having i number of
components is given by:

 (4)

The problem is solved using GA for two cases:
Case 1: Keeping the cost as objective function to be
minimized and unavailability as constraint. That is
represented as:

 (5)

 (6)

Case 2: Keeping the unavailability as objective function to
be minimized and cost as constraint. That is represented as:

 (7)

 (8)

For the high redundancy systems like SGDHR, data for
large number of simultaneous failures does not exist. So, a
common cause analysis is done with beta factor model, in
which the unavailability of a single component is multiplied
by some value of beta depending on the number of such
redundant components. The approach followed in this study
is that active components with levels of redundancy less than
or equal to three, a beta of 5% is used. If redundancy is
greater than or equal to four, a beta of 1% is used.

IV. GENETIC ALGORITHM DESIGN

In a genetic algorithm, many individual solutions are
randomly generated to form an initial population. This
population then evolves over successive generations to give
better solutions. Each generation is comprised of various
phases, the most important being – fitness evaluation,
selection (competition), reproduction (cross-over) and
mutation [4]. Fitness evaluation is the step in which the
quality of an individual is assessed. Selection is an operation
used to decide which individuals to use for reproduction and
mutation in order to produce new search points.
Reproduction is the process by which the genetic material in
two or more parent individuals is combined to obtain one or
more offspring. Mutation is normally applied to one
individual in order to produce a new version of it where
some of the original genetic material has been randomly
changed.

An individual is represented as a string of numbers
known as a chromosome. Chromosomes are composed of
genes where each gene is a set of values called alleles that
represents an encoded decision variable. The binary
encoding scheme of the decision variables is used here for
test interval optimization, due to its simplicity in mutation
operation and also because the range constraint is
automatically implicit [5].

Goldberg DE [4] suggested that good GA performance
requires the choice of high cross over probability, low
mutation probability and a moderate population size. For all
the experiments, crossover rate of 0.6 and mutation rate of
0.03 was taken. Population size was taken as 100 for SGA
and 80 for SSGA with a replacement size of 20. The GA is
implemented for TI optimization with the following methods
and operators:

A. Fitness Scaling

Fitness Scaling was introduced to improve the
performance of GA by controlling the copies of individuals
during the beginning of run and as the run matures.

167

Trends in Innovative Computing 2012 - Intelligent Systems Design

B. Elitism

This was implemented to retain the best individual of a
generation in the next generation so that highest fitness
solutions are not lost in reproduction and mutation.

C. Penalization

Optimization of test schedules is done by taking either
cost or unavailability as the objective function and the other
as the constraint. Constraint Implementation has been done
by converting this problem into a maximizing one by taking
the fitness function as the reciprocal of the actual function
value i.e. to be minimized. If a particular solution vector
violates the constraint its fitness is reduced using the
penalize function as suggested by Martorell[6].

D. Fitness evaluation

An individual is decoded and its cost and unavailability
are found using the models in eq. 2. and eq. 4. Fitness is
evaluated as the inverse of cost or unavailability depending
on which one is taken as the objective function.

E. Selection

For the purpose of comparison the following selection
schemes were considered:

1) Roulette-wheel (RW): It is a sampling method that

picks the individuals by simulating the roulette-wheel for

fitness proportionate selection.

2) Tournament selection: This involves running several

"tournaments" among a few individuals chosen at random

from the population. The winner of each tournament (the

one with the best fitness) is selected for crossover.

3) Hybrid selection: It takes two individuals by fitness

proportionate selection and then chooses the best one among

them for crossover. This increases the selection pressure on

individuals.

F. Mutation

Here, mutation is performed on a bit-by-bit basis. In
binary encoding this simply means changing a 1 to a 0 and
vice versa. By itself, mutation is a random walk through the
string space. When used sparingly with reproduction and
crossover, it is an insurance policy against premature loss of
important notions.

G. Crossover

One point and multipoint crossover differ in the number
of sites, single or many, chosen for exchanging information
between two individuals. As the number of points (sites)
increases for crossover the exchange of information between
individuals takes place over the whole string length at
various places. This increases the probability of finding
better individuals by reproduction.

V. FLAVORS OF GENETIC ALGORITHM

For this study, the Genetic Algorithm has been
implemented in two different ways –SGA and SSGA – to
make a comparison of their performance.

A. Simple Genetic Algorithm (SGA):

 An initial population of solutions is generated and
evaluated. Then a selection process chooses individuals for
crossover and mutation. A new population is formed by
reproduction of the selected individuals. This new population
has better solutions than those of previous generation. The
process is repeated till an optimal solution is found.

B. Steady State Genetic Algorithm (SSGA):

In SSGA the whole population does not undergo
transformation at each generation; instead an auxiliary
population of size nrepl is generated and included in the base
population. After this, the worst nrepl individuals are
excluded from the population based on their fitness
evaluation. In this way some part of the base- population is
carried to next generation without being affected. Hence
SSGA allows more exploration by retaining some low fitness
solutions which would otherwise be lost in a single
generation owing to high selective pressure and reproduction
like in SGA.

VI. RESULTS AND DISCUSSIONS

A. SGA and SSGA

The average fitness for a particular generation can be
obtained from individual fitness score assigned in the fitness
evaluation stage. The average fitness versus generation for
SGA and SSGA were plotted and it was found that SGA
converges very fast to some optimum value and the average
fitness of the population does not change much after that
(Fig. 1.). Whereas, for SSGA, the optimum value is found in
later generations and average of population keep increasing
making the probability of production of a better individual
higher.

The Maximum Fitness value for each generation
represents the individual that has the highest fitness score got
in the fitness evaluation stage. As shown in Fig.2. for more
number of generations SSGA converges to a better optimum
than that of SGA in same number of generations. The SGA
approaches to a higher value at the initial generations itself
but unable to improve further as generations are evolving.

Figure 1. Average Fitness Vs Generations for SGA and SSGA.

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

0 20 40 60 80 100

A
ve

ra
ge

 F
it

n
e

ss

Generation

SGA SSGA

168

Trends in Innovative Computing 2012 - Intelligent Systems Design

Figure 2. Maximum Fitness Vs Generations for SGA and SSGA.

This is due to more exploration and lesser exploitation in the
earlier generations of SSGA where only a few individuals
are allowed to undergo reproduction and most of the
individuals are retained as it is, rather than replacing the
whole population with super individuals. SSGA’s effect on
the dynamics of GA was analyzed in this study. SSGA
improves the efficiency of GA for some problems like the
one that we selected fro our study.

B. Roulette Wheel, Tournament and Hybrid Selection

Roulette Wheel, Tournament and Hybrid selection were
implemented with SSGA. The results do not vary much in
terms of maximum fitness solutions produced by the three
selection techniques (Fig. 3.).

Figure 3. Maximum Fitness Vs Generations for Roulette Wheel,

Tournament and Hybrid Selection.

In the case of average fitness, the evolution of fitness is

faster with hybrid selection than other two selections i.e. it

gives better result in early stages (Fig. 4.). Hence we can say

that the overall performance of hybrid selection method is

better for our problem.

Figure 4. Average Fitness Vs Generations for Roulette Wheel,

Tournament and Hybrid Selection.

VII. CONCLUSION

Here, we have considered the problem of deciding test
intervals for a safety critical system of PFBR, wherein the
test strategy for the plant is improved such that unnecessary
testing burdens are reduced without compromising the plant
safety. The reliability parameters values were taken from an
internal report [2] and serve as input data for solving the
unavailability and cost equations (eq. (2) and (4)). Two
separate optimization cases are considered namely cost
minimization and availability maximization. The
optimization is done using Genetic Algorithms which takes
cost or availability as the objective function and solves for
the set of best test interval values for all components. We
have done a comparative study on two different
implementations of GA namely SGA and SSGA. From the
performance comparison, it is found that SSGA is suitable
for the selected problem. Then different selection techniques
of GA are evaluated with in the selected SSGA. SSGA with
hybrid selection is found to perform better than other
techniques in this complex problem domain with large
population size.

Although the current problem considers only SGDHR of
PFBR, this study can be extended for other safety critical
systems of Nuclear Power Plants and also can be extended to
include other Technical Specifications.

REFERENCES

[1] Haupt R.L and Haupt S.E, ―Practical Genetic Algorithms,‖ John
Wiley & Sons, 1998.

[2] Confidential Internal Report: ―Probabbilistic Safety Assesment, Level
1: Internal Events for PFBR, System Reliability Analysis‖ Volume II,
April 2011.

[3] Confidential Internal Report: ‖Probabbilistic Safety Assesment, Level
1: Internal Events for PFBR, Event Tree and Cutsets,‖ Volume III &
Systems Basic Events Volume IV, April 2011.

1.68E+09

1.68E+09

1.68E+09

1.68E+09

1.68E+09

1.68E+09

1.68E+09

0 200 400 600

M
ax

im
u

m
 F

it
n

e
ss

Generation

SGA SSGA

1.68E+09

1.68E+09

1.68E+09

1.68E+09

1.68E+09

1.68E+09

1.68E+09

0 200 400 600

M
xi

m
u

m
 F

it
n

e
ss

Generation

Roulette Wheel Tournament

Hybrid

0.00E+00

5.00E+08

1.00E+09

1.50E+09

2.00E+09

0 20 40 60 80 100

A
ve

ra
ge

 F
it

n
e

ss

Generation

RW Tournament Hybrid

169

Trends in Innovative Computing 2012 - Intelligent Systems Design

[4] Goldberg D.E, ―Genetic Algorithms in Search Optimization and
Machine Learning,‖ Addison-Wesley Publishing Company, 1989.

[5] Michalewicz Z, ―Genetic Algorithm + Data Structure = Evolution
Programs,‖ Spinger-Verlag, New York, 1994.

[6] Martorell S, Carlos S, Sanchez A, Serradell V. ―Constrained
optimization of test intervals using steady-state genetic algorithms:

170

Trends in Innovative Computing 2012 - Intelligent Systems Design

