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Abstract—With the increase in Nuclear Power Plant (NPP) 

operating experience, the importance of effectively scheduling 

the maintenance activities has been recognized as it decreases 

the testing and maintenance costs without compromising the 

plant safety. Surveillance Tests are vital for safety critical 

systems of nuclear plants that need regular maintenance for 

ensuring reliable functioning. Deciding the value of 

Surveillance Test Interval forms an optimization problem 

where two separate cases can be considered. First one is the 

cost minimization while the performance or unavailability is 

constrained to be at a given level. The second case is the 

maximization of availability or performance, for the given cost 

level. Genetic Algorithm (GA) is applied to solve the model to 

get the global optimized maintenance strategy. The results 

obtained are validated with the reference study results. 

 

Keywords- Genetic Algorithm; Nuclear Power Plants; Safety 

Grade Decay Heat Removal System; Simple Genetic Algorithm; 

Steady State Genetic Algorithm; Prototype Fast Breeder Reactor 

I.  INTRODUCTION  

Genetic Algorithm (GA) is adaptive heuristic search 
algorithm premised on the evolutionary ideas of natural 
selection and genetics. It represents an intelligent 
exploitation of a random search within a defined search 
space to solve optimization and search problems. Since the 
advent of GA in early 1970s it has been employed in many 
application domains. Changes to the implementation of the 
basic GA have been pursued by researchers to improve its 
performance. A particular method may have advantage over 
another for a particular domain of application. GA has been 
successfully employed for Test Interval optimization in 
many plants and continues to apply to existing and upcoming 
NPPs. Varied approaches have been adopted and suggested 
in work relating to this domain. Here, a general structure for 
GA is sought which is most effective in attacking such 
problems. 

A 500 MWe capacity sodium cooled pool type Prototype 
Fast Breeder Reactor (PFBR) project has been designed by 
Indira Gandhi Centre for Atomic Research (IGCAR) which 
is under construction at Kalpakkam. For PFBR Test Interval 
data has been given from experience of previous fast 

reactors, this value can be improved with further cost 
reduction without affecting the unavailability. 

Test Interval Optimization in Fast Reactor domain is 
being done for the first time and we have selected the Safety 
Grade Decay Heat Removal (SGDHR) system of Prototype 
Fast Breeder Reactor (PFBR) for our study. The system 
comprises of many components; with redundancy in design 
for increased component reliability. Test Intervals for all 
components are optimized such that the minimum cost is 
involved in testing without affecting the safety of plant. This 
is a multimodal and multiobjective problem that justifies the 
choice of Genetic Algorithm (GA) over other traditional 
search techniques like hill climbing that have the limitation 
of getting trapped in local optima [1]. The problem is 
complex and the solution space is very large. Normal GA 
techniques do not suffice in providing a global feasible 
solution. Therefore, different flavors of GA and different 
operator techniques have been implemented and compared. 
Here, two categories of GA are considered – Simple Genetic 
Algorithm (SGA) and Steady State Genetic Algorithm 
(SSGA). GA operators like- one point, two point and 
multipoint crossover are explored. Performances of different 
selection operators like- Roulette Wheel, Tournament 
Selection are compared. Coding is carried out in C++ using 
Object Oriented Methodology.  

II. PROBLEM DESCRIPTION 

SGDHR is a passive standby system of PFBR for decay 

heat removal which is called into action when the normal 

active heat removal path, through Operational Grade Decay 

Heat Removal (OGDHR) system is unavailable. For 

successful decay heat removal both Primary Heat Transport 

and SGDHR should work. So, the components in primary 

sodium circuit (like pump, motors), secondary sodium circuit 

(Direct Heat Exchanger, piping, valves) and air circuit (Air 

Heat Exchanger, dampers) need to undergo periodic testing 

and maintenance to guarantee their availability when actual 

demand on the system comes. The reliability analysis was 

done [2] and fault trees [3] for both Primary Circuit and 

Intermediate air circuit were considered. 
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III. EQUATION FORMULATION 

Models for unavailability and cost of testing of individual 
components are established with Surveillance Test Interval 
as decision variable. Reliability parameters like- standby 
failure rate, per demand failure probability, mean time to 
test, testing cost per hour etc. are considered for modeling. 
The list of symbols used to represent reliability parameters 
and their meanings are given in Table 1. The cost of testing 
and maintenance of whole system is found by adding 
individual component costs and the system unavailability is 
found by adding the minimal cutsets derived from the fault 
tree analysis of the system. These models for system cost and 
unavailability serve as objective functions that have to be 
minimized by deciding on the values of test and maintenance 
intervals. 

TABLE I.  RELIABILITY RELATED SYMBOLS USED 

Symbol Meaning 

Ti Surveillance test interval 

T Mean time to test 

λ  Standby failure rate 

TR Mean time to repair 

Cht Surveillance Testing cost per hour 

Chr Cost of repair per hour 

 
The unavailability equation for SGDHR system was 

formulated as: 
        (1) 

where ui(x) represents unavailability of component that 
depends on the vector of decision variables x. Total 
unavailability was found from the cut-set equations obtained 
from the fault tree analysis. System unavailability is sum of j 
number of minimal cut sets and the product k extends to the 
number of basic events in the j

th
 cut set as: 

          (2) 

where ujk represents the unavailability associated with the 
basic event k belonging to minimal cut set number j. The 
cost model is established as: 

          (3) 

The total yearly cost of the system having i number of 
components is given by: 

           (4) 

The problem is solved using GA for two cases:          
Case 1: Keeping the cost as objective function to be 
minimized and unavailability as constraint. That is 
represented as: 

           (5) 

          (6)    

Case 2: Keeping the unavailability as objective function to 
be minimized and cost as constraint. That is represented as: 

           (7) 

          (8) 

For the high redundancy systems like SGDHR, data for 
large number of simultaneous failures does not exist. So, a 
common cause analysis is done with beta factor model, in 
which the unavailability of a single component is multiplied 
by some value of beta depending on the number of such 
redundant components. The approach followed in this study 
is that active components with levels of redundancy less than 
or equal to three, a beta of 5% is used. If redundancy is 
greater than or equal to four, a beta of 1% is used. 

IV. GENETIC ALGORITHM DESIGN 

In a genetic algorithm, many individual solutions are 
randomly generated to form an initial population. This 
population then evolves over successive generations to give 
better solutions. Each generation is comprised of various 
phases, the most important being – fitness evaluation, 
selection (competition), reproduction (cross-over) and 
mutation [4]. Fitness evaluation is the step in which the 
quality of an individual is assessed. Selection is an operation 
used to decide which individuals to use for reproduction and 
mutation in order to produce new search points. 
Reproduction is the process by which the genetic material in 
two or more parent individuals is combined to obtain one or 
more offspring. Mutation is normally applied to one 
individual in order to produce a new version of it where 
some of the original genetic material has been randomly 
changed. 

An individual is represented as a string of numbers 
known as a chromosome. Chromosomes are composed of 
genes where each gene is a set of values called alleles that 
represents an encoded decision variable. The binary 
encoding scheme of the decision variables is used here for 
test interval optimization, due to its simplicity in mutation 
operation and also because the range constraint is 
automatically implicit [5].   

Goldberg DE [4] suggested that good GA performance 
requires the choice of high cross over probability, low 
mutation probability and a moderate population size. For all 
the experiments, crossover rate of 0.6 and mutation rate of 
0.03 was taken. Population size was taken as 100 for SGA 
and 80 for SSGA with a replacement size of 20. The GA is 
implemented for TI optimization with the following methods 
and operators: 

A.  Fitness Scaling 

Fitness Scaling was introduced to improve the 
performance of GA by controlling the copies of individuals 
during the beginning of run and as the run matures. 
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B.  Elitism 

This was implemented to retain the best individual of a 
generation in the next generation so that highest fitness 
solutions are not lost in reproduction and mutation. 

C.  Penalization 

Optimization of test schedules is done by taking either 
cost or unavailability as the objective function and the other 
as the constraint. Constraint Implementation has been done 
by converting this problem into a maximizing one by taking 
the fitness function as the reciprocal of the actual function 
value i.e. to be minimized. If a particular solution vector 
violates the constraint its fitness is reduced using the 
penalize function as suggested by Martorell[6]. 

D.  Fitness evaluation 

An individual is decoded and its cost and unavailability 
are found using the models in eq. 2. and eq. 4. Fitness is 
evaluated as the inverse of cost or unavailability depending 
on which one is taken as the objective function. 

E.   Selection 

For the purpose of comparison the following selection 
schemes were considered: 

1) Roulette-wheel (RW): It is a sampling method that 

picks the individuals by simulating the roulette-wheel for 

fitness proportionate selection. 

2) Tournament selection: This involves running several 

"tournaments" among a few individuals chosen at random 

from the population. The winner of each tournament (the 

one with the best fitness) is selected for crossover. 

3)  Hybrid selection: It takes two individuals by fitness 

proportionate selection and then chooses the best one among 

them for crossover. This increases the selection pressure on 

individuals. 

F. Mutation 

Here, mutation is performed on a bit-by-bit basis. In 
binary encoding this simply means changing a 1 to a 0 and 
vice versa. By itself, mutation is a random walk through the 
string space. When used sparingly with reproduction and 
crossover, it is an insurance policy against premature loss of 
important notions. 

G.  Crossover 

One point and multipoint crossover differ in the number 
of sites, single or many, chosen for exchanging information 
between two individuals. As the number of points (sites) 
increases for crossover the exchange of information between 
individuals takes place over the whole string length at 
various places. This increases the probability of finding 
better individuals by reproduction. 

V. FLAVORS OF GENETIC ALGORITHM 

For this study, the Genetic Algorithm has been 
implemented in two different ways –SGA and SSGA – to 
make a comparison of their performance. 

A.  Simple Genetic Algorithm (SGA): 

 An initial population of solutions is generated and 
evaluated. Then a selection process chooses individuals for 
crossover and mutation. A new population is formed by 
reproduction of the selected individuals. This new population 
has better solutions than those of previous generation. The 
process is repeated till an optimal solution is found. 

B. Steady State Genetic Algorithm (SSGA): 

In SSGA the whole population does not undergo 
transformation at each generation; instead an auxiliary 
population of size nrepl is generated and included in the base 
population. After this, the worst nrepl individuals are 
excluded from the population based on their fitness 
evaluation. In this way some part of the base- population is 
carried to next generation without being affected. Hence 
SSGA allows more exploration by retaining some low fitness 
solutions which would otherwise be lost in a single 
generation owing to high selective pressure and reproduction 
like in SGA. 

VI. RESULTS AND DISCUSSIONS 

A. SGA and SSGA  

The average fitness for a particular generation can be 
obtained from individual fitness score assigned in the fitness 
evaluation stage. The average fitness versus generation for 
SGA and SSGA were plotted and it was found that SGA 
converges very fast to some optimum value and the average 
fitness of the population does not change much after that 
(Fig. 1.). Whereas, for SSGA, the optimum value is found in 
later generations and average of population keep increasing 
making the probability of production of a better individual 
higher.  

The Maximum Fitness value for each generation 
represents the individual that has the highest fitness score got 
in the fitness evaluation stage. As shown in Fig.2. for more 
number of generations SSGA converges to a better optimum 
than that of SGA in same number of generations. The SGA 
approaches to a higher value at the initial generations itself 
but unable to improve further as generations are evolving. 

Figure 1.  Average Fitness Vs Generations for SGA and SSGA. 
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Figure 2.  Maximum Fitness Vs Generations for SGA and SSGA. 

This is due to more exploration and lesser exploitation in the 
earlier generations of SSGA where only a few individuals 
are allowed to undergo reproduction and most of the 
individuals are retained as it is, rather than replacing the 
whole population with super individuals. SSGA’s effect on 
the dynamics of GA was analyzed in this study. SSGA 
improves the efficiency of GA for some problems like the 
one that we selected fro our study.  

B. Roulette Wheel, Tournament and Hybrid Selection 

Roulette Wheel, Tournament and Hybrid selection were 
implemented with SSGA. The results do not vary much in 
terms of maximum fitness solutions produced by the three 
selection techniques (Fig. 3.).  

 
Figure 3.  Maximum Fitness Vs Generations for Roulette Wheel, 

Tournament and Hybrid Selection. 

In the case of average fitness, the evolution of fitness is 

faster with hybrid selection than other two selections i.e. it 

gives better result in early stages (Fig. 4.). Hence we can say 

that the overall performance of hybrid selection method is 

better for our problem. 

 
Figure 4.  Average Fitness Vs Generations for Roulette Wheel, 

Tournament and Hybrid Selection. 

VII. CONCLUSION 

Here, we have considered the problem of deciding test 
intervals for a safety critical system of PFBR, wherein the 
test strategy for the plant is improved such that unnecessary 
testing burdens are reduced without compromising the plant 
safety. The reliability parameters values were taken from an 
internal report [2] and serve as input data for solving the 
unavailability and cost equations (eq. (2) and (4)). Two 
separate optimization cases are considered namely cost 
minimization and availability maximization. The 
optimization is done using Genetic Algorithms which takes 
cost or availability as the objective function and solves for 
the set of best test interval values for all components. We 
have done a comparative study on two different 
implementations of GA namely SGA and SSGA. From the 
performance comparison, it is found that SSGA is suitable 
for the selected problem. Then different selection techniques 
of GA are evaluated with in the selected SSGA.  SSGA with 
hybrid selection is found to perform better than other 
techniques in this complex problem domain with large 
population size. 

Although the current problem considers only SGDHR of 
PFBR, this study can be extended for other safety critical 
systems of Nuclear Power Plants and also can be extended to 
include other Technical Specifications.  
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