
Whale Optimization Algorithm with Exploratory
Move for Wireless Sensor Networks Localization

Nebojsa Bacanin1[0000−0002−2062−924X], Eva Tuba1[0000−0003−4866−9048],
Miodrag Zivkovic1[0000−0002−4351−068X], Ivana

Strumberger1[0000−0002−1154−6696], and Milan Tuba1[0000−0003−3794−3056]

Singidunum University, 11000 Belgrade, Serbia
{nbacanin,mzivkovic,istrumberger}@singidunum.ac.rs,{etuba,tuba}@ieee.org

Abstract. In the modern era, with the development of new technolo-
gies, such as cloud computing and the internet of things, there is a greater
focus on wireless distributed sensors, distributed data processing and re-
mote operations. Low price and miniaturization of sensor nodes have led
to a large number of applications, such as military, forest fire detection,
remote surveillance, volcano monitoring, etc. The localization problem
is among the greatest challenges in the area of wireless sensor networks,
as routing and energy efficiency depend heavily on the positions of the
nodes. By performing a survey of computer science literature, it can be
observed that in the wireless sensor networks localization domain, swarm
intelligence metaheuristics have generated compelling results. In the re-
search proposed in this paper, a modified/improved whale optimization
swarm intelligence algorithm, that incorporates exploratory move opera-
tor from Hooke-Jeeves local search method, applied to solve localization
in wireless networks, is presented. Moreover, we have compared the pro-
posed improved whale optimization algorithm with its original version,
as well as with some other algorithms that were tested on the same
model and data sets, in order to evaluate its performance. Simulation
results demonstrate that our presented hybridized approach manages to
accomplish more accurate and consistent unknown nodes locations in the
wireless networks topology, than other algorithms included in compara-
tive analysis.

Keywords: Node localization ·Wireless sensor networks · Swarm intel-
ligence · Hybridization · Whale optimization algorithm

1 Introduction

The wireless sensor networks (WSNs) are networks that consist of many small
and cheap wireless devices, i.e. sensor nodes, used to detect different phenomena
from the physical world. Due to very limited resources, every node can process
just a small portion of the collected data. However, a large number of nodes
working together can measure given physical variable very precisely. WSNs rely
on the coordination of a large number of nodes in dense layout to perform its
task [1].
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Today, with the development of novel technologies and computing paradigms
like cloud computing and the internet of things (IoT), the focus is on wireless
distributed sensors, distributed data processing and remote operation [7]. Ad-
ditionally, low price and miniaturization of sensor nodes led to a large number
of applications, such as military, forest fire detection, remote surveillance, vol-
cano monitoring, etc. The exact location of target phenomena is often unknown,
therefore distributed sensor nodes allow better coverage and closer positioning
(very important for hostile areas, such as war zones, radioactive areas, etc.). Ad-
ditionally, the monitored area usually does not have any existing infrastructure
such as telecommunications or power supply. In such an environment, sensors
that are deployed randomly, must operate with limited resources and communi-
cate in a wireless manner [23]. It can be safely assumed that their exact positions
are not known. Therefore, among the main challenges from the WSNs domains is
localization, which refers to finding positions of the deployed sensors. Using the
global positioning system (GPS) is not feasible, because sensors have limitations
in terms of computing power and attainable energy.

The WSNs localization problem is an NP-hard by nature and classical algo-
rithms can not be implemented (for example deterministic algorithms), due to
high complexity and often unacceptable computational time [3]. For tackling this
problem, stochastic algorithms like swarm intelligence are capable of generating
satisfying solutions within a relatively short interval.

Swarm intelligence metaheuristics fall into the category of bio-inspired op-
timization methods. According to the literature survey, these approaches have
been successfully applied to solving many complex NP-hard real-life problems.
Some examples of the swarm algorithms that have many practical applications
include: artificial bee colony (ABC) [22], fireworks algorithm (FWA) [19, 20],
bran storm optimization (BSO) [18], monarch butterfly optimization (MBO)
[17], firefly algorithm [21] and tree growth algorithm (TGA) [16]. Moreover,
many hybridized swarm algorithms exist [10, 12, 15], as well as their implemen-
tations for WSNs localization problem [11, 13, 14].

The research presented in this paper aims towards achieving further enhance-
ments in tackling WSNs localization problem by applying swarm intelligence
algorithms. We propose in this paper a hybrid whale optimization swarm in-
telligence algorithm, that adopts exploratory move operator from Hooke-Jeeves
local search method, adapted for solving localization challenge.

The structure of the paper can be summarized as follows. Localization prob-
lem mathematical formulation, which was used in simulations, is given in Section
2. The Section 3 presents hybridized whale optimization algorithm tuned for
node localization problem. In Section 4, simulation environment, as well as ac-
complished results and side-by-side comparisons are given. The Section 5 wraps
up the proposed paper and also provides references for the upcoming research.
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2 Background and proposed model

In the WSNs topology, there are typically two basic types of sensors, anchors
and targets. Anchors usually utilize GPS for determining their location. Target
nodes are randomly distributed in target area and their locations must be esti-
mated by applying localization algorithms. The estimation is usually conducted
in two phases [5]. In the first phase, that is known as the ranging phase, meth-
ods estimate neighboring anchors and unknown sensors nodes distance. On the
contrarily, position of sensors is estimated by applying geometry principles in
the second phase.

The objective of localization is estimation of coordinates of randomly dis-
tributed sensors (targets), with the goal to minimize the objective function. The
position of target node is estimated by the range-based localization technique.

In the first phase, metric received signal strength indicator (RSSI) was used
to assess the distance between the target and anchor nodes, and that signal
was corrupted by Gaussian noise. In the second phase, positions of target nodes
were estimated by using trilateration, together with the results from the ranging
phase. In order the trilateration technique to work, the distances between at least
three anchors and the node with unknown location should be known in advance.
Since measurements have imprecision in both phases, swarm intelligence can be
utilized to minimize the error of localization.

The M target and N anchors sensors are randomly deployed in a 2D envi-
ronment, which the range of transmission denoted as R. The distance between
each target node and anchors in its range is given by equation d̂i = di + ni,
where ni is an additive Gaussian noise, and di is the real distance determined
by using the following expression:

di =
√

(x− xi)2 + (y − yi)2, (1)

where target and anchor nodes positions are represented as (x, y) and (xi, yi),
respectively.

The variance of ni, as the noise that affects the measured distance between
anchors and target senors, is given as:

σ2
d = β2 · Pn · di, (2)

where Pn is the percentage noise in distance calculation di ± di( Pn

100 ), and β is a
parameter whose value is usually adjusted to 0.1 in practical implementations.

The target node is localized if there are at least three anchors with the known
positions A (xa, ya), B (xb, yb), and C (xc, yc), within its transmission range R,
and with distance di from the target node n.

The swarm intelligence metaheuristic was executed independently for each
localizable target node to estimate its position. Artificial individuals are initial-
ized within the anchor nodes centroid by using the following expression:

(xc, yc) =

(
1

N

N∑
i=1

xi,
1

N

N∑
i=1

yi

)
, (3)
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where N denotes the number of anchors within target node range.
The f(x, y), that represents node localization problem objective function, is

formulated as the mean square distance between the anchor and target node,
given in Eq. (4), where N ≥ 3 [5].

f(x, y) =
1

N

(
N∑
i=1

√
(x− xi)2 + (y − yi)2

)2

, (4)

Localization error EL is given by the Equation (5), as the mean of squared
distance between the estimated (Xi, Yi) and the real node coordinates (xi, yi):

EL =
1

NL

N∑
i=1

√
(xi −Xi)2 + (yi − Yi)2 (5)

The efficiency of the algorithm is measured by the localization error average
value EL and the number of non-localized sensors NNL, where NNL = M −NL.

3 Hybridized whale optimization algorithm

The original implementation of the WOA was introduced in 2016 by Mirjalili
and Lewis [9] for tackling unconstrained and constrained continuous optimization
problems [8], [6]. In this paper, hybridized WOA will be presented.

The search process of the WOA is performed by mathematically modeling
the humpback whales hunting behavior. In the nature, humpback whales ex-
press cooperating behavior while hunting their prey by performing a distinctive
hunting strategy, which is in the literature refereed as a bubble-net feeding strat-
egy. These whales chaise small fishes by producing a spiral bubble path which
surrounds their prey and swimming up to the surface of the ocean.

The WOA’s search process is being conducted by simultaneously performing
diversification and intensification phases. The process of exploitation models the
encircling of prey and spiral bubble-net strategy, while the exploration emulates
a search for a prey.

In the phase of exploitation, each candidate solution performs a search in its
neighborhood and it is directed towards the location where is the current global
best solution. When for each solution in the population a fitness is calculated,
positions of all solutions are updated respect to the location of fittest solution
[9]:

−→
D = |

−→
C ·
−→
X ∗(t)−

−→
X (t)| (6)

−→
X (t+ 1) =

−→
X ∗(t)−

−→
A ·
−→
D, (7)

where
−→
X (t) and

−→
X ∗(t) denote candidate and current best solutions in itera-

tion t,
−→
A and

−→
C represent coefficients given by the following expressions [9]:
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−→
A = 2−→a · −→r −−→a (8)

−→
C = 2 · −→r (9)

Original WOA version emulates the bubble-net strategy by utilizing the ex-
pression [9]:

−→a = 2− t 2

maxIter
, (10)

where t and maxIter represent the current and maximal iteration numbers,
respectively.

Second mechanism that guides the process of exploitation executes in two

steps: first, the length of the space between the fittest solution (
−→
X ∗(t)) and

current solution (
−→
X (t)) in iteration t is calculated, and then, a new (updated)

candidate solution (
−→
X (t+ 1)) can be determined by using a spiral equation [9]:

−→
X (t+ 1) =

−→
D′ · ebl · cos(2πl) +

−→
X ∗(t), (11)

where
−→
D′ is defined as

−→
D′ = |

−→
X ∗(t) −

−→
X (t)|, b represents a constant used

to define a shape of logarithmic spiral, while l denotes pseudo-random number
between -1 and 1.

The whales simultaneously move around the pray together with a spiral path
and shrink the circle, which is simulated by choosing between shrinking and
spiral-shaped path in each iteration with equal probability p:

−→
X (t+ 1) =

{−→
X ∗(t)−

−→
A ·
−→
D , if p < 0.5

−→
D′ · ebl · cos(2πl) +

−→
X ∗(t) , if p ≥ 0.5

(12)

The exploration phase is conducted by updating each candidate solution in
the population with respect to the position of a randomly chosen solution rather
than of the global fittest solutions, as it is the case in the process of exploitation.
The following expression models WOA’s exploration phase [9]:

−→
X (t+ 1) =

−→
X rnd(t)−

−→
A ·
−→
D, (13)

where
−→
D , distance between the i-th candidate and the random solution from

the population rnd at iteration t, is given by
−→
D = |

−→
C ·
−→
X rnd(t)−

−→
X (t)|.

By conducting empirical simulations, we concluded that the original WOA
version exhibits the behavior of premature convergence, and as a consequence,
algorithm usually traps in one of the suboptimal regions of the search domain.
The exploration is conducted only in cases when conditions p < 0.5 and |A ≥ 1|
are satisfied. The exploration process should be more intensive, especially in
the early phases of algorithm’s execution. The basic WOA implementation is
explained in more details in [9].
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In order to overcome observed deficiencies, we adapted exploratory move
(EM) from the Hooke-Jeeves local search method, that proved to be an efficient

optimization technique [4]. With an assumption that
−→
X ∗ represents the current

best solution (the base point), fmin is the current minimum objective function

value,
−→
δ = (δ1, δ2, ..., δn) denote step sizes in n directions and −→xt is temporary

vector,the main steps of EM can be summarized in Algorithm 1.

Algorithm 1 EM pseudo-code

Initialization: −→xt =
−→
X∗

for (i = 1 to n) do
−→x t,i =

−→
X∗

i + δi
if (f(−→xt) < fmin) then

continue
else
−→x t,i =

−→
X∗

i − δi
if (f(−→xt) < fmin) then

continue
else
−→x t,i =

−→
X∗

i
end if

end if
end for

Moreover, in our implementation we used adaptive step size
−→
δ . First, all so-

lutions in the population are ranked based on the value of the objective function,
and after the first 10% best solutions are selected for the step size calculation by

the following expression δj = 0.1 · (
∑m
i=1(
−−→
Xi,j −

−→
X ∗j ))/m,where δj denotes the

step size in j-th dimension, and m represents the number of 10% fittest solutions
from the population.

With the assumption that in later iterations of the algorithm, a proper part
of the search space is found, our proposed approach utilizes EM operator only in
first 50% of iterations. In this phase of execution, the EM operator is executed
instead of exploitation process by using Eq. (11).

By incorporating EM into original WOA approach, hybridized WOA-EM is
devised, which pseudo-code is summarized in the Algorithm 2.

4 Simulation results and analysis

Due to the research purpose and for the sake of more precise comparative anal-
ysis, we utilized the same simulation setup as in [2] and [14]. A two-dimensional
(2D) WSN deployment area with a size of 100 U×100 U was used. Static target
sensors and anchors with coordinates (x, y) are randomly deployed on the WSN
deployment area by using pseudo-random number generator.

In the first set of experiments, simulations with 40 target nodes (M) and 8
anchor nodes (N) were performed, while in the second experiment instance, we
utilized varying number of anchors (from 10 to 35) and target (from 25 to 150)
nodes. In both experiments we have taken into account the additive Gaussian
noise signal, which is given by d̂i = di + ni. For more information, please refer
to Eq. (2).
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Algorithm 2 Pseudo-code of the WOA-EM

Initialization. Generate random initial population Xi(i = 1, 2, 3, ..., N) and initialize values of
control parameters.
Fitness calculation. Calculate fitness of each generated solution and determine the fittest solu-
tion X∗

while (t < maxIter) do
for each candidate solution do

Recalculate A, C, a, l and p
if p < 0.5 then

if |A| < 1 then
Recalculate current candidate solution X by using Eq. (7)

else
Choose random solution rnd form the population
Update current candidate solution X by using Eq. (13)

end if
else

if t < maxIter ∗ 0.5 then
Update current candidate solution by applying EM operator

else
Update current candidate solution X by using Eq. (11)

end if
end if

end for
If any solution goes beyond feasible region of the search space, modify it
Evaluate all solutions in the population by calculating fitness
Update position of the global best solution X∗ if necessary
t = t+ 1

end while
return The fittest (X∗) from the current population

The size of population (N) and the maximum iteration number (maxIter)
were set to 30 and 200, respectively for both algorithms, WOA and WOA-EM.
The same parameter adjustments were used in [2] and [14]. The basic WOA pa-
rameters were adjusted as in [9]. Also, in both experiments, as performance in-
dicators, we took the following metrics: the mean number of non-localized nodes
(NNL) and the mean localization error (EL). Values of performance indicators
were averaged over 30 independent runs.

In the first round of experiments, the goal was to measure the influence of
the noise percentage (Pn) in distance measurement on the localization accuracy.
For this purpose we ran original and hybridized WOA metaheuristics with the
value of Pn set to 2 and 5, respectively. With each particular value of Pn we
executed all algorithms in 30 independent runs.

Comparative analysis was performed between WOA-EM and original WOA,
buttery optimization algorithm (BOA), firefly algorithm (FA), particle swarm
optimization (PSO), elephant herding optimization (EHO), hybridized EHO
(HEHO), TGA and dynamic TGA (dynsTGA). For this research we imple-
mented WOA and WOA-EM, while the results for other approaches were taken
form [2] and [14].

Simulation results of the proposed algorithm along with the results of the
algorithms used for comparison are given in Table 1, where better results from
each category are marked bold. Visualization of results for one run of WOA and
WOA-EM, when Pn = 5 is given in Figure 1.
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Table 1: Comparative analysis and simulation results for M = 40, N = 8 with
different values for Pn averaged in 30 runs

Algorithms
Pn = 5 Pn = 2

Mean NNL Mean EL Computing Time (s) Mean NNL Mean EL Computing Time (s)

BOA 4.7 0.28 0.65 4.5 0.21 0.53
FA 6.6 0.72 2.15 6.2 0.69 1.94
PSO 5.9 0.81 0.54 5.6 0.78 0.49
EHO 6.8 0.79 1.1 6.2 0.71 0.9
HEHO 5.3 0.45 1.2 5.1 0.37 1.0
TGA 5.5 0.42 0.9 5.0 0.36 0.8

dynsTGA 4.5 0.19 1.2 4.3 0.16 1.1
WOA 5.9 0.75 1.1 5.6 0.73 1.1

WOA-EM 4.4 0.17 1.3 4.3 0.15 1.2

From the results presented in Table 1, it can be noticed that in average
WOA-EM obtains the best results. Only in the case when Pn is set to 2, for
NNL indicator, WOA-EM performs the same like the dynsTGA. At the other
hand, improvements of WOA-EM over the original WOA are significant in all
test instances. Original WOA obtains similar performance like PSO algorithm.

Fig. 1: Visualization of results when Pn = 5 for one run - WOA (left),
WOA-EM (right)

Results from the second set of experiments, with the varying number of
anchor and target nodes are given in Table 2.

Table 2: Comparative analysis between WOA-EM and WOA for varying
number of target and anchor nodes averaged in 30 runs

Anchors Targets WOA WOA-EM

Mean NNL Mean EL Mean NNL Mean EL

25 10 5 0.73529 1 0.19155
50 50 3 0.55039 2 0.22731
75 20 3 0.69401 2 0.18900
100 25 0 0.64912 0 0.17302
125 30 3 0.61857 1 0.28251
150 35 1 0.71594 1 0.49302
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Based on the results that are given in Table 2, it is obvious that the WOA-EM
significantly improved performance of the basic WOA in terms of convergence,
as well as of results’ quality.

5 Conclusion and future work

The work that has been presented is aimed to improve solving localization prob-
lem in WSNs by utilizing WOA swarm approach. We have modified and im-
proved the basic WOA and it was used for solving this problem.

The scientific contribution of this paper is twofold: improvements of the orig-
inal WOA metaheuristics and advances in solving WSNs localization problem.
Based on the comparison with other state-of-the-art approaches, that were im-
plemented for the same WSNs localization problem, it can be said that it has
proved the robusteness and effectiveness of our proposed WOA-EM approach.

As part of our future research activities, we will try to further improve WOA
approach, and also to apply it to other WSNs localization problem modes that
are current research topics.

Acknowledgment

The paper is supported by the Ministry of Education, Science and Technological
Development of Republic of Serbia, Grant No. III-44006.

References

1. Ahmed, A., Ali, J., Raza, A., Abbas, G.: Wired vs wireless deployment support
for wireless sensor networks. In: TENCON IEEE Region 10 Conference. pp. 1–3
(2006)

2. Arora, S., Singh, S.: Node localization in wireless sensor networks using butterfly
optimization algorithm. Arabian Journal for Science and Engineering 42(8), 3325–
3335 (2017)

3. Goyal, S., Patterh, M.S.: Wireless sensor network localization based on cuckoo
search algorithm. Wireless Personal Communications 79, 223–234 (2014)

4. Hooke, R., Jeeves, T.A.: ”Direct Search” solution of numerical and statistical prob-
lems. Journal of the ACM (JACM) 8(2), 212–229 (1961)

5. Lavanya, D., Udgata, S.K.: Swarm intelligence based localization in wireless sensor
networks. Springer 79, 317–328 (2011)
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