Soft Computing, Data Mining, and Machine Learning approaches in Detection of Heart Disease: A Review

Keshav Srivastava^a and Dilip Kumar Choubey^b

^{a,b}School of Computer Science and Engineering, Vellore Institute of Technology, Vellore ^a{keshav.srivastava1981@gmail.com, keshav.srivastava2019@vitstudent.ac.in} ^b{dilipchoubey_1988@yahoo.in, dilip.choubey@vit.ac.in}

Abstract. Heart disease detection is the need of the hour as it not only deteriorated adults but children are also showing symptoms of it all over the world. It can occur to a person having an improper diet, high cholesterol level, smoking habits, addiction to alcohol or drugs and even occurs to a diabetic patient. Various approaches are there in various fields, say in Machine Learning, Soft Computing, Data Mining are there. This paper aims to provide a survey of several research papers comprising of the above techniques on determining the heart diseases. This paper gives the perspective for the researchers for future work.

Keywords: Heart Disease, Machine Learning, Data Mining, Soft Computing, Decision Trees, KNN, Random Forest, Genetic Algorithm, Neural Network, Multilayer Perceptron, SVM, Naïve Bayes Classifier, Classification, Logistic Regression, Backpropagation Algorithm.

1. Introduction

Heart disease can be present since birth or can occur at any age if an individual neglects his appetite or starts consuming alcohol, drugs or smoking. These are of various types like Congenital heart disease: occurs in an individual since birth, Arrhythmia: Glitching in Heartbeat, Coronary Artery Disease: occurs due to deficiency in nutrients and oxygen in blood, Dilated Cardiomyopathy: results in weakening of muscles which results in improper supply of blood in the body. However, the above mentioned can be prevented by having a balanced diet, exercising regularly, maintaining a good BMI, quit smoking, reducing alcohol consumption, controlling high blood pressure and diabetes. A major challenge for the hospitals is how to provide the best treatment to the patient at an affordable cost for which computer based information can be used by making the use of machine learning, soft computing, and data mining. Here we have reviewed various research papers majorly from the last 3 years which provides a solution of detecting heart disease at an early stage and some models can do it without taking the help of any professional i.e. the patients can themselves set up the environment for this. In the same way Choubey et al. (2016, 2017, 2018, 2019) ([3], [7], [10], [14], [19]), Bala et al. (2017, 2018) ([22], [27]) have briefly summarized of many soft computing, data mining, machine learning approaches for classification of Diabetes, and Thunderstorm respectively. Our work will give future researchers a brief idea of what current technologies have been used for the detection of heart disease and what more can be done to improve them. This paper has been organized as follows: Literature Reviews are presented in Section 2 which includes dataset, techniques, tools, advantages, issues, and accuracy. Discussion and future directions are committed to section 3 in which the existing work and future work is presented and thereby concluded the future directions of this study.

2. Literature Review

Here we have studied several research papers that used soft computing, machine learning, and data mining methods. The study of this work emphasis on particularly heart disease classification. The existing works have been summarized in the form of table which consists dataset used, techniques used, tool used, advantages, issues, and accuracy.

Paper Refer- ence No.	Dataset Used	Techniques Used	Tool Used	Advantages	Issues	Accuracy
[1]	Hospitals from An- dhra Pra- desh, In- dia.	KNN, Ge- netic Algo- rithm.		Improved accu- racy.	Not per- formed well for Breast cancer and primary tu- mour.	90.7%
[2]	Cleve- land Heart Disease dataset.	Random Forest, Big Data, Spark.	Apache Spark	Using a wearable device, real-time data of an individ- ual is processed for mapping with the dataset.	As data was stored in a distributed way so a fail- ure in one system will result in the entire system to fail.	87.5%
[4]	Cleve- land Heart Disease Dataset.	Multilayer Percep- tron.	PyCharm IDE, Py- thon.	Effective way of determining dis- ease as compared to the expensive ECG, CT scan.	If the Fitbit gives wrong then the re- sult will lead to unneces- sary treat- ment.	
[5]	Cleve- land Heart Disease Dataset.	IoT, Naïve Bayes, K- Nearest Neigh- bours, De- cision Tree, SVM.	Arduino IDE	Real-time display of ECG in an iPh- one.	The System is not hetero- geneous.	82.90%
[6]	Ameri- can Heart Associa- tion.	Data Min- ing, Ge- netic Algo- rithm.	MATLAB R2012a	System itself halts the training after reaching a minimum error.	Cannot de- termine the disease in an early stage.	96.2%
[8]	Cleve- land Heart	Data Min- ing, Deci- sion Trees, Naïve	.NET	Using Decision Tree and Naïve Bayes Classifier	It uses cate- gorical data	Neural Net- work gives 49.34%, Na- ïve Bayes

Table 1. Summary of Existing Work for Heart Disease

[9]	Disease database. Real-	Bayes, and Neural Network.	Arduino	the most influenc- ing factor is eval- uated which is chest pain type.	and the da- taset needs to be expanded.	gives 47.58% and Decision Tree gives 41.85%.
	time data from Smart Mouse, Smart Chair, Smart Mirror.	tion, Neu- ral Net- work.	IDE	used to collect data like Mouse, Chair, Mirror and a Smartphone for displaying output.	inconsistent as it is taken from a vari- ety of sources.	
[11]	Cleve- land heart da- taset.	Random Forest, Na- ïve Bayes, C4.5, Mul- tilayer Per- ceptron.		Using ensemble classification for weak classifier, a 7% increase in ac- curacy is ob- served.	Necessary measures are taken to avoid over- fitting be- cause of ran- dom forest.	76.57% with C4.5, 82.18% with Random Forest, 80.86% with MLP, 84.49% with Naïve Bayes.
[12]	Cleve- land Clinical Founda- tion Heart Disease dataset.	Decision Tree, Lo- gistic Re- gression, Random Forest.	Python IDE	For better accuracy, Hyper parameter Tuning is applied.	By taking de- fault values of hyper pa- rameter, de- cision tree model over fits the data.	Decision Tree gives 92.59%, Lo- gistic Re- gression gives 88.50%, and Random Forest gives 93.61%.
[13]	Italian Dataset and Ameri- can Da- taset by NIDDK Reposi- tory.	Non-Lin- ear SVC, RBF Ker- nel Algo- rithm, Grid Search Al- gorithm.		Missing Values are rectified.	Attributes occurring in both dataset are taken.	95.25% in Italian Da- taset and 92.15% in American Dataset.
[15]	Cleve- land Heart Disease	Genetic al- gorithm, K-means algorithm,		MAFIA algo- rithm helped in handling huge da- taset.	No alarming system is there.	

				ſ		
	Data- base.	MAFIA al- gorithm, Decision tree classi- fication.				
[16]	Symp- toms are collected by Doc- tor.	Data Min- ing, K means clustering, SVM Al- gorithm, Decision Tree.		SVM algorithm can find the rela- tionship between the variables of the dataset.	SVM gener- ates Quad- ratic Pro- gramming problem.	
[17]	Heart Disease Data Ware- house.	Naïve Bayes Classifier, KNN, 10- fold cross validation.	Tangara	Tangara improves the accuracy of the model.	Data comes from various sources so it may be pos- sible that the training data is exploited.	Naïve Bayes gives 52.33%, De- cision List gives 52%, and KNN gives 45.67%.
[18]	Cleve- land heart dis- ease da- taset.	Logistic Regres- sion, SVM, Naïve Bayes, ANN, De- cision Tree, KNN, Ran- dom For- est.		Various feature selection algo- rithms are used to find out the irrev- erent features.	6 samples are removed in dataset be- cause of missing val- ues.	Logistic Re- gression gives 84%, SVM gives 86%, Naïve Bayes gives 83%, ANN gives 74%, Decision Tree gives 74%, KNN gives 76%, and Random Forest gives 83%.
[20]	Cleve- land Heart Disease database & Statlog Heart Disease database.	Data Min- ing, Deci- sion Trees, Naïve Bayes, Neural Network.	Weka 3.6.6	Data pre-pro- cessing is used.	To mine un- structured data, text mining can be used.	Decision Trees gives 96.66%, Na- ïve Bayes gives 94.44%, and Neural Net- work gives 99.25%.

[01]	D 1	M. 1.	[NT		
[21]	Real-	Machine		Negative alerts	For effective	
	time data	Learning,		aware of the pa-	result, patient	
	is taken	Java.		tient and the us-	has to wear	
	by the			age of medication	the device	
	wearable			prescription fea-	24X7.	
	device.			ture.		
[23]	Hungar-	Soft Com-	MATLAB	Model predicts	Varying	57.85%
	ian data,	puting,		the disease using	value of 'k'	
	Cleve-	Data Min-		more than one da-	is chosen for	
	land data,	ing, Neural		taset	all the da-	
	and Swit-	Network			tasets.	
	zerland	and Ma-				
	data.	chine				
		Learning.				
[24]	Pima In-	Fuzzy		Local error is esti-	For diagnos-	Pima Indians
	dians dia-	Logic,		mated to improve	ing new pa-	diabetes
	betes and	Data Min-		the classification.	tients ex-	gives 84.2%
	Cleve-	ing, Back-			tracted rules	and Cleve-
	land	propaga-			are used.	land Heart
	Heart	tion Algo-				Disease
	Disease.	rithm, K				gives 86.8%.
		fold cross				
		validation.				
[25]	Ulster	Genetic		Weighted KNN is	A larger da-	63.56%
	Hospital	Algorithm,		used to boost the	taset could	
	of North-	Weighted		effectiveness.	have been	
	ern Ire-	KNN.			used to ex-	
	land.				plore the	
					model.	
[26]	Cleve-	Random		Cleaning, Inte-	In Cleveland	Cleveland
_	land	Forest,		gration and	dataset, there	Heart-Dis-
	Heart-	Classifica-		Standardization is	are many re-	ease Data-
	Disease	tion, En-		done before pro-	dundant val-	base gives
	Data-	semble.		fessing the data.	ues which	91.6%, Car-
	base,			U	can be recti-	diology in-
	Cardiol-				fied using	patient da-
	ogy inpa-				Data Mining.	taset gives
	tient da-				3	97%.
	taset					
	from					
	PKU					
	People's					
	-					
	Hospital.					

3. Discussion and Future Direction

Here are some papers which are reviewed on the prediction and detection of Various Heart Disease like Congenital heart disease, Arrhythmia, Coronary Artery Disease[25], Dilated Cardiomyopathy using various algorithms of neural network[6], machine learning ([4], [5], [12], [13], [25]) and some data mining techniques ([6], [8], [15], [20]). In some papers a hybrid system[24] is made to detect the disease, some models offer the real-time heart rate, ECG, some models use IoT technologies. The Table 2 illustrating the future work over existing work for further implementation and research purposes.

Paper	Existing Work	Future Work
Reference No.		
[4]	A fit-bit is used to determine the heart disease in real-time using multi percep- tron model which is an economical as compared to expensive ECG and CT Scan.	Using Cloud Technologies the data can be stored on the cloud and thus can be used to determine like cancer, diabetes using ma- chine learning, image processing, and fuzzy logic techniques.
[5]	By combining the power of IoT and ma- chine learning algorithms like Naïve Bayes, K-Nearest Neighbours, Decision Tree, and SVM a real-time ECG is ob- tained on the user's phone.	As the data is taken in real-time so deep learn- ing can be used to make the data more effec- tive by updating weights and calculating error to enhance the accuracy.
[6]	This model utilizes the true power of machine learning algorithms as usually a dataset contains a lot of irrelevant at- tributes but using Logistic Regression, SVM, Naïve Bayes, ANN, Decision Tree, KNN, Random Forest the irrever- ent features are removed.	A k cross validation algorithm can be imple- mented on the dataset to compensate for the missing values.
[8]	A huge dataset is taken on which Deci- sion Tress and Naïve Bayes Classifier are applied and it is concluded that chest pain type is most important in determin- ing the heart disease.	Other medical attributes can be used along with other data mining techniques like Clus- tering, Association Rules and Time Series on continuous dataset instead of categorical da- taset for better performance.
[12]	Various Machine Learning algorithms were applied on the datasets of which Random Forest gives the best result.	Deep Learning can be applied to the system to find effective errors and thus boost the ef- fectiveness of the system.

Table 2. Summary of Future Work over Existing Work

r		
[13]	Algorithms like Non-Linear SVC, RBF	Various Data Mining and Soft Computing
	Kernel Algorithm, and Grid Search Al-	techniques can be applied to the Italian Da-
	gorithm were applied on both the da-	taset to fully exclude the bias value.
	tasets to remove the missing values.	
[15]	A real-time heart rate monitoring sys-	A health report summary can be generated for
	tem is developed and the patient is going	future work with which the patient can go to
	to have a heart attack then an emergency	the doctor for better consultation and the
	message will be sent.	number of recipient for an emergency should
		not be limited to ambulance only.
[20]	This model uses the Data Mining, Deci-	Data Mining is not enough to extract features
	sion Trees, Naïve Bayes, Neural Net-	from the dataset as this model can use Text
	work using which Data pre-processing	mining to mine the unstructured data present
	is done on the dataset to find out the	in the dataset.
	missing values.	
[24]	A hybrid system is developed using	For treating new patients some knowledge
	Fuzzy Logic, Data Mining, Backpropa-	can be extracted from the trained hybrid neu-
	gation Algorithm, K fold cross valida-	ral network.
	tion for the diagnosing of heart disease	
	in which classification is improved by	
	estimating local error.	
[25]	Data from Ulster Hospital of Northern	For future work, the implicit or explicit
	Ireland is obtained and Genetic Algo-	knowledge can be used for the comparison of
	rithm, Weighted KNN are used to find	the different models and the data must be pre-
	the heart disease of which around 20%	processed for incorporating with the missing
		values.
	of the missing values are obtained using	, uno o
	Weighted KNN.	

4. Conclusion

As the number of persons suffering from heart disease are increasing due to various factors like diet, heredity, smoking habits, cholesterol and diabetes so it is a dire need to make an effective system which can determine any heart disease at a really early stage so that the proper treatment can be done and the price of developing that system should also be taken into consideration so that a person belonging to any background can utilize it. As discussed in this paper majorly Machine Learning, Soft Computing and Data Mining are taken into consideration which provided useful information and some model attained an accuracy greater than 90%. From this study one of the future direction, may be to design such a classification based model which will provide more accuracy then existing as shown in Table 1. Future researchers can also use Big Data technologies along with these to make the model more efficient and reliable to users as well as developers.

References

- Jabbar, M.Akhil., Deekshatulu, B.L., Chandra, Priti. (2013). Classification of Heart Disease Using K- Nearest Neighbor and Genetic Algorithm. Elsevier, pp: 85-94.
- [2] Ed-daoudy, Abderrahmane., Maalmi, Khalil. (2019). Real-time machine learning for early detection of heart disease using big data approach. IEEE.
- [3] Choubey, Dilip Kumar., Tripathi, Sudhakar., Kumar, Prabhat., Shukla, Vaibhav., Dhandhania, Vinay Kumar. Classification of Diabetes by Kernel based SVM with PSO, Recent Patents on Computer Science, Bentham Science, Accepted (In Press, 2019).
- [4] Gavhane, Aditi., Kokkula, Gouthami., Pandya, Isha., Devadkar, Prof. Kailas. (2018). Prediction of Heart Disease Using Machine Learning. IEEE, pp: 1275-1275.
- [5] Dharmasiri, N.D.K.G., Vasanthapriyan, S. (2018). Approach to Heart Diseases Diagnosis and Monitoring through Machine Learning and iOS Mobile Application. IEEE, pp: 407-412.
- [6] Amin, Syed Umar., Agarwal, Kavita., Beg, Dr. Rizwan. (2013). Genetic Neural Network Based Data Mining in Prediction of Heart Disease Using Risk Factors. IEEE, pp: 1227-1331.
- [7] Choubey, Dilip Kumar., Paul, Sanchita., Sandilya, Smita., Dhandhania, Vinay Kumar. Implementation and Analysis of Classification algorithms for Diabetes, Current Medical Imaging Reviews, Bentham Science, Accepted (In Press, 2018).
- [8] Palaniappan, Sellappan., Awang, Rafiah. (2008). Intelligent Heart Disease Prediction System Using Data Mining Techniques. IEEE, pp: 108-115.
- [9] Wijaya, Rifki., Prihatmanto, Ary Setijadi., Kuspriyanto. (2013). Preliminary Design of Estimation Heart disease by using machine learning ANN within one year. IEEE.
- [10] Choubey, Dilip Kumar., Paul, Sanchita. (2017). GA_RBF NN: A Classificatio System for Diabetes. International Journal of Biomedical Engineering and Technology (IJBET), Inderscience, Vol. 23, No. 1, pp. 71-93.
- [11] Latha, C. Beulah Christalin., Jeeva, S. Carolin. (2019). Improving the accuracy of prediction of heart disease risk based on ensemble classification techniques. Elsevier.
- [12] R, Shashikant., P, Chetankumar. (2019). Predictive model of cardiac arrest in smokers using machine learning technique based on Heart Rate Variability parameter. Elsevier.
- [13] Mezzatesta, Sabrina., Torino, Claudia., Meo, Pasquale De., Fiumara, Giacomo., Vilasi, Antonio. (2019). A machine learning-based approach for predicting the outbreak of cardiovascular diseases in patients on dialysis. Elsevier.
- [14] Choubey, Dilip Kumar., Paul, Sanchita. (2016). Classification techniques for diagnosis of diabetes: a review, International Journal of Biomedical Engineering and Technology (IJBET), Inderscience, Vol. 21, No. 1, pp. 15-39.
- [15] Babu, Sarath., EM, Vivek., KP, Famina., K, Fida., P, Aswathi., M, Shanid., M, Hena. (2017). Heart Disease Diagnosis Using Data Mining Technique. IEEE, pp: 750-753.
- [16] Raju, Cincy., E, Philipsy., Chacko, Siji., Suresh, L Padma., S, Deepa Rajan.(2018). A Survey on Predicting Heart Disease using Data Mining Techniques.

IEEE, pp: 253-255.

- [17] Rajkumar, Asha., Reena, Mrs. G.Sophia. (2010). Diagnosis Of Heart Disease Using Datamining Algorithm. GJCST, Volume: 10, Issue: 10, Version: 1.0, pp: 38-43.
- [18] Haq, Amin Ul., Li, Jian Ping., Memon, Muhammad Hammad., Nazir, Shah., Sun, Ruinan. (2018). A Hybrid Intelligent System Framework for the Prediction of Heart Disease Using Machine Learning Algorithms. Hindawi, GJCST, Volume:2018, pp: 01-22.
- [19] Choubey, Dilip Kumar., Paul, Sanchita. (2016). GA_MLP NN: A Hybrid Intelligent System for Diabetes Disease Diagnosis. International Journal of Intelligent Systems and Applications (IJISA), MECS, Vol. 8, No. 1, pp. 49-59.
- [20] Dangare, Chaitrali S., Apte, Sulabha S. (2012). Improved Study of Heart Disease Prediction System using Data Mining Classification Techniques. International Journal of Computer Applications, Volume 47– No.10, pp: 44-48, 2012.
- [21] Frederix, Sankaran, S., Coninx, K., Dendale, P. (2016). MobileHeart, a mobile smartphone-based application that supports and monitors coronary artery disease patients during rehabilitation. IEEE, pp: 513-216.
- [22] Bala, Kanchan., Choubey, Dilip Kumar., Paul, Sanchita. (2017). Soft Computing and Data Mining Techniques for Thunderstorms and Lightning Prediction: A Survey. International Conference of Electronics, Communication and Aerospace Technology (ICECA 2017), IEEE, during 20-22 April, 2017, ISBN 978-1-5090 5686-6, RVS Technical Campus, Coimbatore, Tamilnadu, India, Vol. 1, pp. 42-46.
- [23] Anooj, P.K. (2012). Clinical decision support system: Risk level prediction of heart disease using weighted fuzzy rules. Journal of King Saud University – Computer and Information Sciences, pp: 27-40.
- [24] Kahramanli, Humar., Allahverdi, Novruz. (2007). Design of a hybrid system for the diabetes and heart diseases. Elsevier, pp: 82-89.
- [25] Giardina, Marisol., Azuaje, Francisco., McCullagh, Paul., Harper, Roy. (2006). A Supervised Learning Approach to Predicting Coronary Heart Disease Complications in Type 2 Diabetes Mellitus Patients. IEEE.
- [26] Xu, Shan., Zhang, Zhen., Wang, Daoxian., Hu, Junfeng., Duan, Xiaohui. (2017). Cardiovascular Risk Prediction Method Based on CFS Subset Evaluation and Random Forest Classification Framework. IEEE, pp: 228-232.
- [27] Bala, Kanchan., Choubey, Dilip Kumar., Paul, Sanchita., Lala, Mili Ghosh Nee. (2018). Classification Techniques for Thunderstorms and Lightning Prediction- A Survey. Soft Computing-Based Nonlinear Control Systems Design, IGI Global, ISBN 978-1-5225-3531-7, pp. 1-17.