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Abstract. With the evolution of smart grids in recent years, load fore-
casting has received more research focus than ever before. Several tech-
niques, especially based on artificial neural network and support vector
regression, have been proposed for this purpose. However, due to lack
of appropriate modeling of external influences over the load data, the
performance of these techniques remarkably deteriorates while making
forecast for the peak load values, especially on short-term basis. In this
paper, we present a strategy to forecast hourly peak load using Recur-
rent Neural Network with Long-Short-Term-Memory architecture. The
novelty lies here in improving the forecast accuracy by an intelligent in-
corporation of available domain knowledge during the forecast process.
Experimentation is carried out to forecast hourly peak load in five differ-
ent zones in USA. The experimental results are found to be encouraging.
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1 Introduction

Load forecasting is an active area of research since 1960s. This provides in-
sight into future consumption of power load, based on observed data as well as
consumer behavior, and eventually, helps a lot in pricing, utility planning and
distribution of power in effectual way [2]. Even a fractional increase in load fore-
cast accuracy can have a significant effect on improving a country’s economy. As
a consequence, the power load forecasting still remains a popular area of research
in the present background of twenty first century.

One of the key factors playing important role in power load forecasting is
the timescale. On the basis of timescale, the load forecasting can be divided into
three broad categories [7], namely Short-term load forecast (STLF), Mid-term
load forecast (MTLF), and Long-term load forecast (LTLF). STLF is done for
very short duration of time. It can be a few minutes, hours, a day, or even a week.
The primary aim of STLF is planning of power exchange and optimal generator
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unit commitment. It can also aid in addressing real-time control and security as-
sessments of the plant. MTLF is made for a month to a year or two. This helps
in scheduling maintenance, coordinating load dispatches, and also maintaining
a balance between supply and demand. LTLF is done for few years ( > 1 year)
to 10–20 years ahead. Major decisions regarding generation, transmission, and
distribution of power are made based on the results of LTLF.

Problem Statement and Challenges: In the present paper, we focus on
short-term forecast of peak load on hourly basis. Given the time series of hourly
peak load data y1, y2, · · · , yt over t time stamps (hours), the goal is to predict
the peak load for the next m time stamps, i.e. y(t+1), y(t+2), · · · , y(t+m) on hourly
basis. The task is not as trivial as it seems. Though extensive research efforts
have been made so far to improve the performance of peak load forecasting,
the area still retains substantial research importance because of a number of
challenges prevailing over here. Apart from the highly complex and non-linear
nature of the electric load data, the other challenges in short-term peak load
forecasting arise due to its dependency on seasonal and social factors. In major-
ity of the cases, it becomes difficult to acquire the relevant data on influencing
factors (such as change in temperature, humidity, customer behavior etc.) and
accurately fit these into a forecasting model. Hence, the current research thrust
is to come up with a complementary method that can better utilize the avail-
able data and can help improving the model performance even when the data
on influencing factors are unavailable.

Our Contributions: In the present work, we attempt to address the above-
mentioned issues by exploiting the power of computational intelligence and avail-
able domain knowledge. Our major contributions in this context are as follows:

– proposing an hourly peak load forecasting approach based on RNN with
long-short-term-memory (LSTM) architecture;

– devising an intelligent way of improving RNN performance with incorporated
domain knowledge;

– proposing a mechanism for dynamic updating of rule base in a knowledge
based system;

– validating the effectiveness of the proposed approach with respect to fore-
casting hourly peak load in five different zones in USA;

The rest of the paper is organized as follows. Section 2, reviews the existing
works on short-term load forecasting. Section 3 discusses on the fundamentals of
the recurrent neural network with long-short-term memory architecture. Section
4 thoroughly describes our proposed approach for hourly peak load forecasting.
The details of experimentation along with the results of hourly load forecast are
presented in Section 5, and finally, we conclude in Section 6.

2 Related Works

Short-term load forecasting (STLF) is quite an widely investigated research area.
As per the recent surveys [5], most of the existing STLF models are defined either
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on classical auto-regressive models or on artificial neural network (ANN) based
machine learning techniques. The classical models mostly suffer from the issue
of modeling non-linearity within load time series data, which is addressed by the
ANN models [1, 8] with their ability to efficiently analyze non-linear problems.
Unfortunately, due to the over-fitting and curse-of-dimensionality issues, the
ANN-based load forecasting models are often found to produce poor prediction
performance in many of the load forecasting scenarios [2]. In order to tackle these
issues, a number of support vector machine (SVM)-based models [10] have been
proposed in recent days. Nevertheless, the modeling of influences from external
factors still remains a challenge for accurate load forecasting. Incidentally, to the
best of our knowledge, the issue of modeling external influences in absence of
the relevant data has not yet been addressed in any of the existing works.

3 An Overview of Recurrent Neural Networks
3.1 Recurrent Neural Networks (RNNs)

RNNs are the exclusive cases of feed forward neural networks, where the hid-
den units are connected in such a way that it forms a directed cycle (recurrent
connection) thus allowing the network models to exhibit dynamic temporal be-
havior. One of the major benefits of having such recurrent connection is that
the memory of previous inputs remains within the networks internal state. This
makes RNNs applicable to various complex problems of sequence to sequence
learning. Typically, the current input xt is multiplied with weight u and then is
added to the product of the previous output yt−1 and corresponding weight w.
This value is passed through tanh nonlinearity to generate the current output.

yt = tanh(wyt−1 + uxt) (1)

The simplest RNN can be visualized by unrolling the time axis of a fully con-
nected neural network (refer to Fig. 1).

Fig. 1: Neural network variants: (a) Feed-forward model, (b) Recurrent model

3.2 RNN with Long-Short-Term Memory (LSTM)

The Long-Short-Term Memory (LSTM) architecture [6] of RNN is primarily
proposed to overcome the issues of vanishing/exploding gradient and lack of
ability to capture the long-term dependencies in standard RNN. LSTM can
enforce constant error flow through constant error carousels within special units
by bridging minimal time lags in excess of 1000 discrete time steps. Typically,
the LSTM architecture consists of three gates, as illustrated next.
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– Forget Gate: The forget gate concatenates the previous hidden state (ht−1)
at t−1 and the current input (xt) at time t into a single tensor. It then passes
it through a sigmoid function (σ) after applying a linear transformation. If
the output of the forget gate is 1, then it completely forgets the previous
state, otherwise if it is 0, then the previous internal state is passed as it is.
Accordingly, the return vector of forget gate can be represented as follows:

ft = σ(Wf [ht−1, xt] + bf ) (2)

where, bf and Wf are the bias and weight vector for the forget gate.

– Input Gate: In the input gate, the current input (xt) and the previous
hidden state (ht−1) are concatenated and passed through another sigmoid
layer. The return vector of this gate can be represented as follows:

it = σ(Wi[ht−1, xt] + bi) (3)

where, bi and Wi are the bias and the weight vector for the input gate.
Once the input return vector is determined, the candidate layer applies a
tanh nonlinearity to the current input and the previous output in the LSTM
cell and generates a candidate vector in following manner:

Ĉt = tanh(Wc[ht−1, xt] + bc) (4)

where, bc is the bias and Wc is the weight vector for the candidate layer.
After the current candidate value is determined, it is added to the fraction
of the old cell state C(t−1) as allowed by the forget gate, to produce the

updated cell state: Ct = ft ∗ C(t−1) + it ∗ Ĉt

– Output Gate: The output gate controls what fraction of the internal state
is passed to the output. The return vectors from the output gate is expressed
below, where, bo and Wo are the corresponding bias and the weight vector.

Ot = σ(Wo[ht−1, xt] + bo) (5)

ht = Ot ∗ tanh(Ct) (6)

4 Hourly Peak Load Forecasting: Proposed Approach

The overall flow of the proposed forecast model is depicted in Fig. 2. As shown in
the figure, the approach is comprised of three major steps: 1) Data pre-processing,
2) RNN-LSTM analysis, and 3) Knowledge-driven tuning of forecast value.

4.1 Data Pre-processing

The primary objective of this step is to convert the input dataset into desired
format: < dd−mm−yyyy hh−mm, peakLoadV alue > (refer to Fig. 2). Further,
the step also processes for the missing instances in the dataset. Accordingly, the
whole dataset is re-sampled at one hour frequency and the missing values are
filled out using backfill method [9] in order to have consistency in the dataset.
Since RNN depends on scale of data, in the pre-processing step, we also normalize
the dataset to have values in the range of 0 to 1.
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Fig. 2: Flow of the proposed forecast approach

4.2 RNN-LSTM Analysis

The initial forecast for the hourly peak load is obtained using the RNN-LSTM,
as described in Section 3.2. Thus, the forecast for the next time stamp (t + 1)
becomes as follows:

yt+1 = softmax(Ot+1) (7)

Ot+1 = σ(Wo[ht, xt+1] + bo) (8)

where, Ot+1 is the un-normalized output which is further normalized using
softmax function to obtain the forecast value y(t+1) of the hourly peak load.
The value of ht is determined by following the eq. 6 as illustrated in Section 3.

4.3 Knowledge-driven tuning of Forecast values

As established in literature, various factors, including the weather condition and
customer behavior can have significant influence on short-term load forecasting.
However, the relevant data are not always available in practice. In this con-
text, we propose a novel technique of utilizing our generic domain knowledge to
indirectly extract such influence pattern from the given load time series data.
As per the domain knowledge, the load demand during Summer and Winter
is more, compared to that in Autumn and Spring (refer Fig. 3 (a)). Even, the
load demand is different during different hours of the day. For example, the load
demand during normal working office hours is higher compared to other time
(refer Fig. 3 (c)). Also, it is evident from Fig. 3 (b) that the load demand on
Weekends is less than the load demand on weekdays. This is so because most of
the workplaces are closed on weekends. Accordingly, we use this knowledge to
indirectly determine the effect of weather factors and customer behavior on the
power load variation of any zone.

Feature Creation: In order to utilize the domain knowledge available with
us, we create four new features so as to tune the forecast values, and to further
improve our forecast accuracy. The new features are as follows:
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Fig. 3: Total demand on (a) daily basis, (b) weekly basis , (c) hourly basis[11]

– Difference = load value[i+1] - load value[i]
– Season (S) : Winter ⇒ December, January, February

Summer ⇒ June, July, August
Autumn ⇒ September, October, November
Spring ⇒ March, April, May

– Time of the day (T) = Morning, Day, Evening, Night
– Weekend (W) = Binary variable indicating the given day is a weekend or not.

W =

{
1 : Weekend

0 : Otherwise

Fine-tuning forecast values: In order to fine-tune the forecast value obtained
from RNN-LSTM analysis, first we calculate the average difference between all
consecutive pairs of observed load values, considering all the possible combina-
tions of possible Season, Time of the day, and whether it is Weekend or not.
Then these average values are added to the forecast values based on a dynami-
cally changing rule-base. Typically, each rule is generated in following form:

If Season=S & Time=T & Weekend=W Then tuning-component=Dict(S,T,W)

where Dict(S, T,W ) is a function of Difference (see feature creation). Even
though it looks trivial, the process helps extracting and incorporating domain
knowledge in our forecast model, and thereby, helps in improving the forecast
accuracy. In general, the electricity demand is significantly affected by customer
consumption behavior that changes almost arbitrarily with the change in weather
conditions (temperature, humidity etc.), random occurrence of social events (e.g.
special game series, festivals, party etc.), change in individual work-load over a
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week, and so on. However, the lack of data availability often becomes the biggest
issue for direct modeling of influences of these factors in a load forecast model.
Contrarily, the present process employs a data-driven technique for an indirect
as well as smart extraction of the pattern of how load demand changes with
the customer-behavior change according to the variation in seasonal factors and
day-to-day social activities. Our approach for knowledge-driven fine-tuning of
forecast value is presented in Algorithm 1.

Algorithm 1 Knowledge-driven Forecast Value Tuning

1: /* Initialization
2: Season := [Winter, Spring, Summer,Autumn]
3: Time := [Morning,Day,Evening,Night]
4: Weekend := [0, 1]
5: for S ∈ Season do
6: for T ∈ Time do
7: for W ∈ Weekend do
8: Count = 0; Sum = 0;
9: for i ∈ 1:nrow(TrainData) do
10: if Season=S & Time=T & Weekend=W then
11: Sum += Difference[i];
12: Count++;
13: end if
14: end for
15: Dict(S,T,W) = Sum/Count; /* Dynamically changing rule-base
16: end for
17: end for
18: end for
19:
20: for S ∈ Season do
21: for T ∈ Time do
22: for W ∈ Weekend do
23: for i ∈ 1:nrow(TestData) do
24: if Season=S & Time=T & Weekend=W then
25: Forecast[i] += Dict(S,T,W); /* Fine-tuning forecast value
26: end if
27: end for
28: end for
29: end for
30: end for

5 Experimental Evaluation

5.1 Study Area and Dataset

The effectiveness of our proposed knowledge-driven RNN-LSTM model is val-
idated with respect to hourly load forecasting using the dataset from Kaggle
“Global Energy Forecasting Competition” held in 20121. The reason for using
this publicly available and well known load forecasting dataset is to allow other
researchers to easily compare their models to our proposed method. The dataset
consists of zone-wise load history of USA, among which we have considered the
data of 5 zones (Zone-1 to Zone-5) to build and test our model.

5.2 Experimental Setup
The proposed model is evaluated in comparison with four baselines, namely sta-
tistical ARIMA, NARNET (non-linear autoregressive neural network), RNN,

1 https://www.kaggle.com/c/global-energy-forecasting-competition-2012-load-forecasting
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and RNN-LSTM models. The proposed forecasting model (knowledge-driven
RNN with LSTM architecture) along with normal RNN, RNN-LSTM, and ARIMA
models are implemented using python (Flavor: Anaconda Python and IDE:
Jupyter notebook). For the deep learning part, Keras2 is used. On the other side,
for NARNET, we have used the library function of MATLAB NN-Toolbox3. The
model building, training and testing are carried out in a 64-bit PC with windows
10 OS and 4GB RAM. The typical configuration of our model is as follows: one
hidden layer having 16 LSTM blocks; one output layer, predicting the hourly
load. The dataset is split into 67% training set and 33% test set. For data pre-
processing, LSTM-based forecast, and knowledge-driven tuning, we follow the
same convention as exemplified in the respective subsections within Section 4.

All the considered models are evaluated with respect to two popular statis-
tical goodness-of-fit criteria, namely NRMSD (normalized root mean squared
deviation)[3] and MAPE (mean absolute percentage error)[4]. Additionally, we
also perform correlation study over the forecast from the considered NN-based
models and the actual load values.

Table 1: Comparison of model performance for different zones in USA

Study Zone Metrics RNN (LSTM) RNN NARNET ARIMA Proposed Approach

Zone 1
NRMSD 19.574 32.604 21.325 26.71 15.916
MAPE 7.112 25.321 31.469 23.680 6.815

Zone 2
NRMSD 19.246 39.220 31.077 29.898 18.058
MAPE 4.043 15.871 23.598 17.418 3.728

Zone 3
NRMSD 18.842 26.875 32.331 29.898 18.066
MAPE 4.035 16.432 23.925 17.418 3.718

Zone 4
NRMSD 14.415 37.842 36.839 39.688 12.297
MAPE 6.474 15.079 37.839 14.635 5.997

Zone 5
NRMSD 21.172 30.188 30.659 20.818 18.477
MAPE 9.075 20.918 41.121 20.443 8.392

5.3 Results and Discussions

The results of comparative study are summarized in Table 1 and in Figs. 4-5.
On analyzing the results, the following inferences can be drawn:

– As shown in Table 1, for all the considered study zones, the proposed model
produces small NRMSDs and MAPEs, which are even lesser than that of the
benchmark RNN-LSTM model. This indicates superiority of our knowledge-
driven LSTM variant over all other considered models.

– The high value of correlation (refer Fig. 5) reveals that the hourly load series
forecasts made by our model have best match with the observed load time
series. [Due to the page limitation, we have included the results of correlation
study only for the Zone-1.]

– Finally, as depicted in Fig. 4, the average percentage improvement (in reduc-
ing error) for the proposed forecast model with respect to standard RNN-
LSTM, RNN, and NARNET models are 9%, 59%, and 63%, respectively.

2 https://github.com/keras-team/keras
3 https://se.mathworks.com/help/deeplearning/ref/narnet.html
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Fig. 4: Percentage improvement in forecast error compared to various NN vari-
ants: (a) RNN-LSTM, (b) RNN, (c) NARNET

Fig. 5: Correlation between actual and forecast values for the considered NN
variants (Zone-1): (a) Proposed model, (b) RNN-LSTM, (c) RNN, (d) NARNET
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Overall, in comparison with the baselines, our proposed knowledge-driven RNN-
LSTM variant is found to show improved performance with respect to all the
considered metrics. This demonstrates that the factor contributing to the in-
creased accuracy of our model is nothing but the intelligent incorporation of the
domain knowledge, which is the main contribution of this work.

6 Conclusions

In this paper, we have proposed a novel variant of short-term load forecasting
(STLF) strategy based on RNN with LSTM architecture. The uniqueness of the
proposed method remains in embedding available domain information to tune
the forecast values. The promising results of experimental study demonstrate
significant improvement in forecast accuracy due to incorporation of domain
knowledge in the forecast process. In future, we plan to upgrade this model with
added feature for utilizing spatial auto-correlation among neighboring zones.
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